Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
J Chem Theory Comput. 2017 Jun 13;13(6):2533-2549. doi: 10.1021/acs.jctc.6b01118. Epub 2017 May 22.
We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (J. Chem. Phys. 1985, 82, 5053), our DMRG-SCF algorithm is based on a direct minimization of an energy expression which is correct to second order with respect to changes in the molecular orbital basis. We exploit a simultaneous optimization of the MPS wave function and molecular orbitals in order to achieve quadratic convergence. In contrast to previously reported (augmented Hessian) Newton-Raphson and superconfiguration-interaction algorithms for DMRG-SCF, energy convergence beyond a quadratic scaling is possible in our ansatz. Discarding the set of redundant active-active orbital rotations, the DMRG-SCF energy converges typically within two to four cycles of the self-consistent procedure.
我们提出了一种基于矩阵乘积态(MPS)的二次收敛密度矩阵重整化群自洽场(DMRG-SCF)方法。受 Werner 和 Knowles 的提议(J. Chem. Phys. 1985, 82, 5053)启发,我们的 DMRG-SCF 算法基于对分子轨道基变化的二阶精确能量表达式的直接最小化。我们利用 MPS 波函数和分子轨道的同时优化来实现二次收敛。与之前报道的用于 DMRG-SCF 的(扩充海森)牛顿-拉普森和超组态相互作用算法不同,我们的方案中,能量收敛可能超出二次标度。通过舍弃冗余的活性-活性轨道旋转集,DMRG-SCF 能量通常在自洽过程的两到四个循环内收敛。