Ugandi Mihkel, Roemelt Michael
Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
J Chem Theory Comput. 2025 Apr 22;21(8):3930-3944. doi: 10.1021/acs.jctc.5c00021. Epub 2025 Apr 7.
This work reports an implementation of the analytical nuclear gradients and nonadiabatic couplings with state-averaged SCF wave functions from a spin-pure selected configuration interaction (SCI) method. At the core of the implementation lies the evaluation of the Lagrange multipliers required for the variational calculation of the nuclear gradient. Using the same code infrastructure, we developed a fully CI-coupled second-order orbital optimization method. Both the calculation of the nuclear gradient and the second-order orbital optimization make use of density fitting in order to accelerate the calculation of the two-electron integrals. We demonstrate the use of analytical nuclear gradients in excited-state geometry optimizations for conjugated molecules. In addition, the first triplet excited-state geometry of a transition-metal catalyst, Fe(PDI), was optimized with up to 30 orbitals in the active space. Our results outline the capabilities of the implemented methods as well as directions for future work.
本工作报道了一种利用自旋纯选定组态相互作用(SCI)方法,结合状态平均自洽场波函数实现解析核梯度和非绝热耦合的方法。该实现的核心在于对核梯度变分计算所需拉格朗日乘子的评估。利用相同的代码框架,我们开发了一种完全组态相互作用耦合的二阶轨道优化方法。核梯度计算和二阶轨道优化均采用密度拟合以加速双电子积分的计算。我们展示了解析核梯度在共轭分子激发态几何优化中的应用。此外,还对过渡金属催化剂Fe(PDI)的首个三重态激发态几何进行了优化,活性空间中最多使用了30个轨道。我们的结果概述了所实现方法的能力以及未来工作的方向。