Suppr超能文献

使用动态加权普通最小二乘法进行个性化医疗的模型验证与选择

Model validation and selection for personalized medicine using dynamic-weighted ordinary least squares.

作者信息

Wallace Michael P, Moodie Erica Em, Stephens David A

机构信息

1 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

2 Department of Mathematics and Statistics, McGill University, Montreal, Canada.

出版信息

Stat Methods Med Res. 2017 Aug;26(4):1641-1653. doi: 10.1177/0962280217708665. Epub 2017 May 10.

Abstract

Model assessment is a standard component of statistical analysis, but it has received relatively little attention within the dynamic treatment regime literature. In this paper, we focus on the dynamic-weighted ordinary least squares approach to optimal dynamic treatment regime estimation, introducing how its double-robustness property may be leveraged for model assessment, and how quasilikelihood may be used for model selection. These ideas are demonstrated through simulation studies, as well as through application to data from the sequenced treatment alternatives to relieve depression study.

摘要

模型评估是统计分析的一个标准组成部分,但在动态治疗方案文献中受到的关注相对较少。在本文中,我们专注于用于最优动态治疗方案估计的动态加权普通最小二乘法,介绍如何利用其双重稳健性进行模型评估,以及如何将拟似然用于模型选择。这些想法通过模拟研究以及对缓解抑郁症的序贯治疗替代方案研究数据的应用得到了证明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验