Suppr超能文献

用于最优动态治疗方案估计的差分隐私结果加权学习

Differentially Private Outcome-Weighted Learning for Optimal Dynamic Treatment Regime Estimation.

作者信息

Spicker Dylan, Moodie Erica E M, Shortreed Susan M

机构信息

Department of Mathematics and Statistics, University of New Brunswick (Saint John), NB, Canada.

Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, QC, Canada.

出版信息

Stat. 2024;13(1). doi: 10.1002/sta4.641. Epub 2024 Jan 17.

Abstract

Precision medicine is a framework for developing evidence-based medical recommendations that seeks to determine the optimal sequence of treatments tailored to all of the relevant patient-level characteristics which are observable. Because precision medicine relies on highly sensitive, patient-level data, ensuring the privacy of participants is of great importance. Dynamic treatment regimes (DTRs) provide one formalization of precision medicine in a longitudinal setting. Outcome-Weighted Learning (OWL) is a family of techniques for estimating optimal DTRs based on observational data. OWL techniques leverage support vector machine (SVM) classifiers in order to perform estimation. SVMs perform classification based on a set of influential points in the data known as support vectors. The classification rule produced by SVMs often requires direct access to the support vectors. Thus, releasing a treatment policy estimated with OWL requires the release of patient data for a subset of patients in the sample. As a result, the classification rules from SVMs constitute a severe privacy violation for those individuals whose data comprise the support vectors. This privacy violation is a major concern, particularly in light of the potentially highly sensitive medical data which are used in DTR estimation. Differential privacy has emerged as a mathematical framework for ensuring the privacy of individual-level data, with provable guarantees on the likelihood that individual characteristics can be determined by an adversary. We provide the first investigation of differential privacy in the context of DTRs and provide a differentially private OWL estimator, with theoretical results allowing us to quantify the cost of privacy in terms of the accuracy of the private estimators.

摘要

精准医学是一个用于制定循证医学建议的框架,旨在确定针对所有可观察到的相关患者层面特征量身定制的最佳治疗顺序。由于精准医学依赖于高度敏感的患者层面数据,确保参与者的隐私至关重要。动态治疗方案(DTR)在纵向环境中提供了精准医学的一种形式化。结果加权学习(OWL)是一类基于观察数据估计最佳DTR的技术。OWL技术利用支持向量机(SVM)分类器进行估计。SVM基于数据中一组称为支持向量的有影响的点进行分类。SVM产生的分类规则通常需要直接访问支持向量。因此,发布用OWL估计的治疗策略需要发布样本中一部分患者的患者数据。结果,SVM的分类规则对那些数据构成支持向量的个体构成了严重的隐私侵犯。这种隐私侵犯是一个主要问题,特别是考虑到DTR估计中使用的可能高度敏感的医疗数据。差分隐私已成为确保个体层面数据隐私的数学框架,对对手能够确定个体特征的可能性有可证明的保证。我们首次在DTR的背景下研究差分隐私,并提供一个差分隐私的OWL估计器,理论结果使我们能够根据私有估计器的准确性来量化隐私成本。

相似文献

2
Optimal dynamic treatment regime estimation in the presence of nonadherence.
Biometrics. 2025 Apr 2;81(2). doi: 10.1093/biomtc/ujaf041.
3
Bayesian inference for optimal dynamic treatment regimes in practice.
Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.
4
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.
5
DPWSS: differentially private working set selection for training support vector machines.
PeerJ Comput Sci. 2021 Dec 1;7:e799. doi: 10.7717/peerj-cs.799. eCollection 2021.
6
Differentially Private Singular Value Decomposition for Training Support Vector Machines.
Comput Intell Neurosci. 2022 Mar 26;2022:2935975. doi: 10.1155/2022/2935975. eCollection 2022.
7
Efficient differentially private learning improves drug sensitivity prediction.
Biol Direct. 2018 Feb 6;13(1):1. doi: 10.1186/s13062-017-0203-4.
8
Residual Weighted Learning for Estimating Individualized Treatment Rules.
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
9
Optimal dynamic treatment regime estimation using information extraction from unstructured clinical text.
Biom J. 2022 Apr;64(4):805-817. doi: 10.1002/bimj.202100077. Epub 2022 Feb 3.
10
Privacy preserving RBF kernel support vector machine.
Biomed Res Int. 2014;2014:827371. doi: 10.1155/2014/827371. Epub 2014 Jun 12.

本文引用的文献

1
Confidence-ranked reconstruction of census microdata from published statistics.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2218605120. doi: 10.1073/pnas.2218605120. Epub 2023 Feb 17.
3
Preserving data privacy when using multi-site data to estimate individualized treatment rules.
Stat Med. 2022 Apr 30;41(9):1627-1643. doi: 10.1002/sim.9318. Epub 2022 Jan 28.
4
Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
Stat Med. 2022 Jan 30;41(2):407-432. doi: 10.1002/sim.9234. Epub 2021 Oct 28.
5
Formulating causal questions and principled statistical answers.
Stat Med. 2020 Dec 30;39(30):4922-4948. doi: 10.1002/sim.8741. Epub 2020 Sep 23.
6
Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.
Stat Med. 2018 Nov 20;37(26):3776-3788. doi: 10.1002/sim.7844. Epub 2018 Jun 5.
7
C-learning: A new classification framework to estimate optimal dynamic treatment regimes.
Biometrics. 2018 Sep;74(3):891-899. doi: 10.1111/biom.12836. Epub 2017 Dec 11.
8
Model validation and selection for personalized medicine using dynamic-weighted ordinary least squares.
Stat Methods Med Res. 2017 Aug;26(4):1641-1653. doi: 10.1177/0962280217708665. Epub 2017 May 10.
9
Outcome-adaptive lasso: Variable selection for causal inference.
Biometrics. 2017 Dec;73(4):1111-1122. doi: 10.1111/biom.12679. Epub 2017 Mar 8.
10
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验