Suppr超能文献

人类小热休克蛋白HSPB6的N端结构域中的特定序列决定了其与同源物HSPB1优先形成异源寡聚体。

Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.

作者信息

Heirbaut Michelle, Lermyte Frederik, Martin Esther M, Beelen Steven, Sobott Frank, Strelkov Sergei V, Weeks Stephen D

机构信息

From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.

the Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and.

出版信息

J Biol Chem. 2017 Jun 16;292(24):9944-9957. doi: 10.1074/jbc.M116.773515. Epub 2017 May 9.

Abstract

Small heat-shock proteins (sHSPs) are a conserved group of molecular chaperones with important roles in cellular proteostasis. Although sHSPs are characterized by their small monomeric weight, they typically assemble into large polydisperse oligomers that vary in both size and shape but are principally composed of dimeric building blocks. These assemblies can include different sHSP orthologues, creating additional complexity that may affect chaperone activity. However, the structural and functional properties of such hetero-oligomers are poorly understood. We became interested in hetero-oligomer formation between human heat-shock protein family B (small) member 1 (HSPB1) and HSPB6, which are both highly expressed in skeletal muscle. When mixed , these two sHSPs form a polydisperse oligomer array composed solely of heterodimers, suggesting preferential association that is determined at the monomer level. Previously, we have shown that the sHSP N-terminal domains (NTDs), which have a high degree of intrinsic disorder, are essential for the biased formation. Here we employed iterative deletion mapping to elucidate how the NTD of HSPB6 influences its preferential association with HSPB1 and show that this region has multiple roles in this process. First, the highly conserved motif RLFDQFG is necessary for subunit exchange among oligomers. Second, a site ∼20 residues downstream of this motif determines the size of the resultant hetero-oligomers. Third, a region unique to HSPB6 dictates the preferential formation of heterodimers. In conclusion, the disordered NTD of HSPB6 helps regulate the size and stability of hetero-oligomeric complexes, indicating that terminal sHSP regions define the assembly properties of these proteins.

摘要

小热休克蛋白(sHSPs)是一类保守的分子伴侣,在细胞蛋白质稳态中发挥重要作用。尽管sHSPs的特点是单体分子量小,但它们通常组装成大小和形状各异的大型多分散寡聚体,主要由二聚体结构单元组成。这些组装体可以包括不同的sHSP直系同源物,从而产生可能影响伴侣活性的额外复杂性。然而,这种异源寡聚体的结构和功能特性却知之甚少。我们对人类热休克蛋白家族B(小)成员1(HSPB1)和HSPB6之间的异源寡聚体形成感兴趣,它们在骨骼肌中均高表达。当这两种sHSPs混合时,会形成仅由异二聚体组成的多分散寡聚体阵列,这表明在单体水平上存在优先结合。此前,我们已经表明,具有高度内在无序性的sHSP N端结构域(NTDs)对于这种偏向性形成至关重要。在这里,我们采用迭代缺失图谱法来阐明HSPB6的NTD如何影响其与HSPB1的优先结合,并表明该区域在此过程中具有多种作用。首先,高度保守的基序RLFDQFG对于寡聚体之间的亚基交换是必需的。其次,该基序下游约20个残基的位点决定了所得异源寡聚体的大小。第三,HSPB6特有的一个区域决定了异二聚体的优先形成。总之,HSPB6无序的NTD有助于调节异源寡聚体复合物的大小和稳定性,表明sHSP的末端区域决定了这些蛋白质的组装特性。

相似文献

3
The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain.
Arch Biochem Biophys. 2016 Nov 15;610:41-50. doi: 10.1016/j.abb.2016.10.002. Epub 2016 Oct 4.
4
Chaperone activity of human small heat shock protein-GST fusion proteins.
Cell Stress Chaperones. 2017 Jul;22(4):503-515. doi: 10.1007/s12192-017-0764-2. Epub 2017 Jan 27.
5
Regulation of small heat-shock proteins by hetero-oligomer formation.
J Biol Chem. 2020 Jan 3;295(1):158-169. doi: 10.1074/jbc.RA119.011143. Epub 2019 Nov 25.
6
Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity.
Structure. 2018 Aug 7;26(8):1116-1126.e4. doi: 10.1016/j.str.2018.05.015. Epub 2018 Jul 5.
7
Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins.
Biochimie. 2012 Aug;94(8):1794-804. doi: 10.1016/j.biochi.2012.04.012. Epub 2012 Apr 17.
9
Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20).
Biochim Biophys Acta. 2009 Mar;1794(3):486-95. doi: 10.1016/j.bbapap.2008.11.010. Epub 2008 Dec 3.
10
Three-dimensional structure of α-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6.
J Mol Biol. 2011 Aug 5;411(1):110-22. doi: 10.1016/j.jmb.2011.05.024. Epub 2011 May 30.

引用本文的文献

3
Heat shock proteins and metal ions - Reaction or interaction?
Comput Struct Biotechnol J. 2023 May 24;21:3103-3108. doi: 10.1016/j.csbj.2023.05.024. eCollection 2023.
4
Is Depleted in Colon Cancer Patients and Its Expression Is Induced by 5-aza-2'-Deoxycytidine In Vitro.
Medicina (Kaunas). 2023 May 21;59(5):996. doi: 10.3390/medicina59050996.
6
Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases.
Front Mol Biosci. 2022 Feb 25;9:842149. doi: 10.3389/fmolb.2022.842149. eCollection 2022.
9
Tissue-specific small heat shock protein 20 activation is not associated with traditional autophagy markers in Ossabaw swine with cardiometabolic heart failure.
Am J Physiol Heart Circ Physiol. 2020 Nov 1;319(5):H1036-H1043. doi: 10.1152/ajpheart.00580.2020. Epub 2020 Sep 18.

本文引用的文献

1
Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator.
Structure. 2017 Feb 7;25(2):305-316. doi: 10.1016/j.str.2016.12.005. Epub 2017 Jan 12.
2
The Chaperone Activity and Substrate Spectrum of Human Small Heat Shock Proteins.
J Biol Chem. 2017 Jan 13;292(2):672-684. doi: 10.1074/jbc.M116.760413. Epub 2016 Nov 30.
3
The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain.
Arch Biochem Biophys. 2016 Nov 15;610:41-50. doi: 10.1016/j.abb.2016.10.002. Epub 2016 Oct 4.
4
A Mechanism of Subunit Recruitment in Human Small Heat Shock Protein Oligomers.
Biochemistry. 2015 Jul 21;54(28):4276-84. doi: 10.1021/acs.biochem.5b00490. Epub 2015 Jul 7.
5
6
A first line of stress defense: small heat shock proteins and their function in protein homeostasis.
J Mol Biol. 2015 Apr 10;427(7):1537-48. doi: 10.1016/j.jmb.2015.02.002. Epub 2015 Feb 10.
7
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
8
Dissecting the functional role of the N-terminal domain of the human small heat shock protein HSPB6.
PLoS One. 2014 Aug 26;9(8):e105892. doi: 10.1371/journal.pone.0105892. eCollection 2014.
9
In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
PLoS One. 2014 Apr 23;9(4):e95507. doi: 10.1371/journal.pone.0095507. eCollection 2014.
10
The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1562-70. doi: 10.1073/pnas.1322673111. Epub 2014 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验