Gutzweiler Ludwig, Kartmann Sabrina, Troendle Kevin, Benning Leo, Finkenzeller Günter, Zengerle Roland, Koltay Peter, Stark G Björn, Zimmermann Stefan
Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany. Hahn-Schickard, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany.
Biofabrication. 2017 Jun 1;9(2):025027. doi: 10.1088/1758-5090/aa7218.
We present (1) a fast and automated method for large scale production of HUVEC spheroids based on the hanging drop method and (2) a novel method for well-controlled lateral deposition of single spheroids by drop-on-demand printing. Large scale spheroid production is achieved via printing 1536 droplets of HUVEC cell suspension having a volume of 1 μl each within 3 min at a pitch of 2.3 mm within an array of 48 × 32 droplets onto a flat substrate. Printing efficiencies between 97.9% and 100% and plating efficiencies between 87.3% and 100% were achieved. Harvested spheroids (consisting of approx. 250 HUVECs each) appear uniform in size and shape. After incubation and harvesting, the spheroids are deposited individually in user-defined patterns onto hydrogels using an automated drop-on-demand dispenser setup. Controlled by an image detection algorithm focusing the dispenser nozzle, droplets containing exactly one spheroid are printed onto a substrate, while all other droplets are discarded. Using this approach an array of 6 × 3 HUVEC spheroids with intermediate distances of 500 μm embedded in fibrin was generated. Successful progress of spheroid sprouting and merging of neighboring sprouts was observed during the first 72 h of incubation indicating a good viability of the deposited spheroids.
我们展示了(1)一种基于悬滴法大规模生产人脐静脉内皮细胞(HUVEC)球体的快速自动化方法,以及(2)一种通过按需滴印实现对单个球体进行精确侧向沉积的新方法。通过在3分钟内将1536个体积均为1μl的HUVEC细胞悬液滴以2.3mm的间距打印在一个由48×32个液滴组成的阵列中的平坦基板上,实现了大规模球体生产。打印效率在97.9%至100%之间,接种效率在87.3%至100%之间。收获的球体(每个球体约由250个人脐静脉内皮细胞组成)在大小和形状上看起来均匀一致。在孵育和收获后,使用自动按需滴印分配器装置将球体以用户定义的模式逐个沉积到水凝胶上。由聚焦分配器喷嘴的图像检测算法控制,将恰好含有一个球体的液滴打印到基板上,而所有其他液滴则被丢弃。使用这种方法,生成了一个嵌入纤维蛋白中的6×3个人脐静脉内皮细胞球体阵列,中间距离为500μm。在孵育的前72小时内观察到球体发芽和相邻芽融合的成功进展,表明沉积的球体具有良好的活力。