State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China.
College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190, China.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):18626-18638. doi: 10.1021/acsami.7b05459. Epub 2017 May 24.
Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.
乙酰胆碱酯酶(AChE)的化学调节剂或潜在的纳米材料对毒理学和药理学都很重要。通过直接催化活性部位(CAS)结合的竞争性抑制或通过干扰底物和产物的进入和退出的非竞争性抑制已被认为是一种针对定制纳米材料的 AChE 抑制机制。以前尚未探索过通过外周阴离子结合部位(PAS)相互作用而没有 CAS 结合的竞争性抑制。在这里,我们通过实验和计算方法提出并验证了疏水功能化 C 纳米粒子(NPs)通过 PAS 相互作用而没有 CAS 结合的假定竞争性抑制 AChE 的发生。动力学抑制分析将六种竞争性抑制剂(可能针对 PAS)与原始和亲水改性的 C NPs 区分开来。然后建立了一个简单的定量纳米结构-活性关系(QNAR)模型,将取代基的口袋可及长度与抑制能力联系起来,以揭示表面基团的几何形状如何决定 NP 在 AChE 抑制中的差异。分子对接确定 PAS 是通过 T 形插件模式与 NPs 相互作用的潜在结合位点。具体来说,富勒烯核通过与 PAS 中的 Tyr72 和 Trp286 的π-π堆叠覆盖酶峡谷作为盖子,而富勒烯表面上的疏水性配体插入 AChE 活性部位为复合物提供进一步的稳定性。该模型预测抑制作用将因 Tyr72 和 Trp286 的缺失而严重受损,随后的定点突变实验证明了这一预测。我们的结果表明,NP 没有 CAS 参与的 AChE 竞争性抑制作用,从而进一步了解 NP 的神经毒性和治疗效果。