Martinussen Torben, Vansteelandt Stijn, Tchetgen Tchetgen Eric J, Zucker David M
Department of Biostatistics, University of Copenhagen Øster Farimagsgade 5B, 1014 Copenhagen K, Denmark.
Department of Applied Mathematics and Computer Sciences, Ghent University, Krijgslaan 281 S9, 9000 Ghent, Belgium.
Biometrics. 2017 Dec;73(4):1140-1149. doi: 10.1111/biom.12699. Epub 2017 May 10.
The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time-to-event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time-varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi-parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP-study.
在计量经济学中,使用工具变量来估计暴露对结局的影响很常见,在流行病学中也越来越普遍。这种日益普及可能归因于观察性研究中工具变量的自然出现,这些研究通过设计或自然方式纳入了随机化元素(例如,基因的随机遗传)。对于连续结局,工具变量估计暴露效应已经确立,在某种程度上对于二元结局也是如此。然而,由于删失和生存偏差引起的复杂性,对于事件发生时间结局,工具变量估计在很大程度上还缺乏。在本文中,我们在一类结构累积生存模型下提出了一个新颖的建议,这类模型直接在生存函数的尺度上对时点暴露的时变效应进行参数化;这些模型本质上等同于工具变量加性风险模型的半参数变体。我们为这些暴露效应提出了一类递归工具变量估计量,并推导了它们的大样本性质以及推断工具。我们在模拟研究中检验了所提出方法的性能,并在一项孟德尔随机化研究中进行了说明,该研究使用健康与退休研究的数据来评估糖尿病对死亡率的影响。我们还基于健康保险计划(HIP)研究,使用所提出的方法来研究乳腺癌筛查对后续乳腺癌死亡率的潜在益处。