Suppr超能文献

加权估计器对受限平均生存时间的遵嘱平均因果效应,考虑到观察到的工具-结局混杂因素。

Weighted estimators of the complier average causal effect on restricted mean survival time with observed instrument-outcome confounders.

机构信息

Office of Biostatistics, U.S. Food and Drug Administration, Silver Spring, MD, USA.

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Biom J. 2021 Apr;63(4):712-724. doi: 10.1002/bimj.201900284. Epub 2020 Dec 21.

Abstract

A major concern in any observational study is unmeasured confounding of the relationship between a treatment and outcome of interest. Instrumental variable (IV) analysis methods are able to control for unmeasured confounding. However, IV analysis methods developed for censored time-to-event data tend to rely on assumptions that may not be reasonable in many practical applications, making them unsuitable for use in observational studies. In this report, we develop weighted estimators of the complier average causal effect (CACE) on the restricted mean survival time in the overall population as well as in an evenly matchable population (CACE-m). Our method is able to accommodate instrument-outcome confounding and adjust for covariate-dependent censoring, making it particularly suited for causal inference from observational studies. We establish the asymptotic properties and derive easily implementable asymptotic variance estimators for the proposed estimators. Through simulation studies, we show that the proposed estimators tend to be more efficient than instrument propensity score matching-based estimators or IPIW estimators. We apply our method to compare dialytic modality-specific survival for end stage renal disease patients using data from the U.S. Renal Data System.

摘要

在任何观察性研究中,一个主要关注点是治疗与感兴趣的结局之间存在未测量的混杂。工具变量(IV)分析方法能够控制未测量的混杂。然而,为删失时间事件数据开发的 IV 分析方法往往依赖于在许多实际应用中可能不合理的假设,使得它们不适合用于观察性研究。在本报告中,我们为总体人群以及可均等匹配人群中的受限平均生存时间开发了遵从平均因果效应(CACE)的加权估计量(CACE-m)。我们的方法能够适应工具-结局混杂,并调整因协变量而导致的删失,因此特别适合从观察性研究中进行因果推断。我们建立了所提出估计量的渐近性质,并推导出了易于实现的渐近方差估计量。通过模拟研究,我们表明所提出的估计量往往比基于工具倾向评分匹配的估计量或 IPIW 估计量更有效。我们应用我们的方法来比较美国肾脏数据系统中终末期肾病患者的透析方式特异性生存。

相似文献

3
Additive hazard causal model with a binary instrumental variable.具有二元工具变量的相加风险因果模型。
Stat Methods Med Res. 2025 Mar 20:9622802251314288. doi: 10.1177/09622802251314288.

本文引用的文献

3
Instrumental variables estimation under a structural Cox model.结构 Cox 模型下的工具变量估计。
Biostatistics. 2019 Jan 1;20(1):65-79. doi: 10.1093/biostatistics/kxx057.
5
Nonparametric binary instrumental variable analysis of competing risks data.竞争风险数据的非参数二元工具变量分析
Biostatistics. 2017 Jan;18(1):48-61. doi: 10.1093/biostatistics/kxw023. Epub 2016 Jun 26.
9
Instrumental variable estimation in a survival context.生存背景下的工具变量估计
Epidemiology. 2015 May;26(3):402-10. doi: 10.1097/EDE.0000000000000262.
10
Instrumental variable additive hazards models.工具变量相加风险模型
Biometrics. 2015 Mar;71(1):122-130. doi: 10.1111/biom.12244. Epub 2014 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验