Suppr超能文献

Cas6通过多种机制处理紧密和宽松重复RNA:一种假说。

Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: A hypothesis.

作者信息

Sefcikova Jana, Roth Mitchell, Yu Ge, Li Hong

机构信息

Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA.

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.

出版信息

Bioessays. 2017 Jun;39(6). doi: 10.1002/bies.201700019. Epub 2017 May 11.

Abstract

RNA molecules are flexible yet foldable. Proteins must cope with this structural duality when forming biologically active complexes with RNA. Recent studies of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-mediated RNA immunity illustrate some remarkable mechanisms with which proteins interact with RNA. Currently known structures of CRISPR-Cas6 endoribonucleases bound with RNA suggest a conserved protein recognition mechanism mediated by RNA stem-loops. However, a survey of CRISPR RNA reveals that many repeats either lack a productive stem-loop (Relaxed) or possess stable but inhibitory structures (Tight), which raises the question of how the enzyme processes structurally diverse RNA. In reviewing recent literature, we propose a bivalent trapping and an unwinding mechanism for CRISPR-Cas6 to interact with the Relaxed and the Tight repeat RNA, respectively. Both mechanisms aim to create an identical RNA conformation at the cleavage site for accurate processing.

摘要

RNA分子具有柔韧性但也可折叠。蛋白质在与RNA形成生物活性复合物时必须应对这种结构上的双重性。近期对成簇规律间隔短回文重复序列(CRISPRs)介导的RNA免疫的研究阐明了蛋白质与RNA相互作用的一些显著机制。目前已知的与RNA结合的CRISPR-Cas6核糖核酸内切酶结构表明存在一种由RNA茎环介导的保守蛋白质识别机制。然而,对CRISPR RNA的一项调查显示,许多重复序列要么缺乏有效的茎环(松弛型),要么具有稳定但有抑制作用的结构(紧密型),这就提出了该酶如何处理结构多样的RNA的问题。在回顾近期文献时,我们提出了一种二价捕获机制和一种解旋机制,分别用于CRISPR-Cas6与松弛型和紧密型重复RNA相互作用。这两种机制的目的都是在切割位点产生相同的RNA构象,以便进行精确加工。

相似文献

1
Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: A hypothesis.
Bioessays. 2017 Jun;39(6). doi: 10.1002/bies.201700019. Epub 2017 May 11.
2
Cutting it close: CRISPR-associated endoribonuclease structure and function.
Trends Biochem Sci. 2015 Jan;40(1):58-66. doi: 10.1016/j.tibs.2014.10.007. Epub 2014 Nov 18.
3
Approaches to study CRISPR RNA biogenesis and the key players involved.
Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17.
4
Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.
Nucleic Acids Res. 2014 Jan;42(2):1341-53. doi: 10.1093/nar/gkt922. Epub 2013 Oct 22.
5
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
FEBS Lett. 2015 Oct 7;589(20 Pt B):3197-204. doi: 10.1016/j.febslet.2015.09.005. Epub 2015 Sep 10.
6
A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6.
Structure. 2016 Apr 5;24(4):547-554. doi: 10.1016/j.str.2016.02.009. Epub 2016 Mar 17.
7
8
Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6.
Structure. 2013 Mar 5;21(3):385-93. doi: 10.1016/j.str.2013.01.010.
9
Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.
Nucleic Acids Res. 2014 Jun;42(10):6532-41. doi: 10.1093/nar/gku308. Epub 2014 Apr 20.
10
Binding and cleavage of CRISPR RNA by Cas6.
RNA. 2010 Nov;16(11):2181-8. doi: 10.1261/rna.2230110. Epub 2010 Sep 30.

引用本文的文献

1
CRISPR-based gene editing technology and its application in microbial engineering.
Eng Microbiol. 2023 Jun 20;3(4):100101. doi: 10.1016/j.engmic.2023.100101. eCollection 2023 Dec.
2
Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of .
Front Microbiol. 2021 Oct 22;12:736565. doi: 10.3389/fmicb.2021.736565. eCollection 2021.
3
Digging into the lesser-known aspects of CRISPR biology.
Int Microbiol. 2021 Nov;24(4):473-498. doi: 10.1007/s10123-021-00208-7. Epub 2021 Sep 6.
4
Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering.
Front Bioeng Biotechnol. 2020 Mar 4;8:62. doi: 10.3389/fbioe.2020.00062. eCollection 2020.
5
Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects.
Front Microbiol. 2019 Oct 25;10:2471. doi: 10.3389/fmicb.2019.02471. eCollection 2019.
6

本文引用的文献

1
A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6.
Structure. 2016 Apr 5;24(4):547-554. doi: 10.1016/j.str.2016.02.009. Epub 2016 Mar 17.
2
Nucleic acid-binding specificity of human FUS protein.
Nucleic Acids Res. 2015 Sep 3;43(15):7535-43. doi: 10.1093/nar/gkv679. Epub 2015 Jul 6.
3
Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.
Biochimie. 2015 Jul;114:147-54. doi: 10.1016/j.biochi.2015.02.005. Epub 2015 Feb 17.
4
Cutting it close: CRISPR-associated endoribonuclease structure and function.
Trends Biochem Sci. 2015 Jan;40(1):58-66. doi: 10.1016/j.tibs.2014.10.007. Epub 2014 Nov 18.
5
Structural Principles of CRISPR RNA Processing.
Structure. 2015 Jan 6;23(1):13-20. doi: 10.1016/j.str.2014.10.006. Epub 2014 Nov 26.
6
Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.
Nucleic Acids Res. 2014 Jun;42(10):6532-41. doi: 10.1093/nar/gku308. Epub 2014 Apr 20.
7
Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.
Nucleic Acids Res. 2014 Jan;42(2):1341-53. doi: 10.1093/nar/gkt922. Epub 2013 Oct 22.
9
CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems.
Nucleic Acids Res. 2013 Sep;41(17):8034-44. doi: 10.1093/nar/gkt606. Epub 2013 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验