State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University , Nanjing 211198, China.
ACS Nano. 2017 Jun 27;11(6):5897-5905. doi: 10.1021/acsnano.7b01637. Epub 2017 May 17.
Direct photocatalysis making use of plasmonic metals has attracted significant attention due to the light-harnessing capabilities of these materials associated with localized surface plasmon resonance (LSPR) features. Thus far, most reported work has been limited to plasmon-induced chemical transformations. Herein, we demonstrate that electrochemical reactions can also be accelerated by plasmonic nanoparticles upon LSPR excitation. Using glucose electrocatalysis as a model reaction system, the direct plasmon-accelerated electrochemical reaction (PAER) on gold nanoparticles is observed. The wavelength- and solution-pH-dependent electrochemical oxidation rate and the dark-field scattering spectroscopy results confirm that the hot charge carriers generated during plasmon decay are responsible for the enhanced electrocatalysis performance. Based on the proposed PAER mechanism, a plasmon-improved glucose electrochemical sensor is constructed, demonstrating the enhanced performance of the non-enzyme sensor upon LSPR excitation. This plasmon-accelerated electrochemistry promises potential applications in (bio)electrochemical energy conversion, electroanalysis, and electrochemical devices.
由于这些材料与局域表面等离子体共振 (LSPR) 特性相关的光捕获能力,直接光催化利用等离子体金属引起了人们的极大关注。到目前为止,大多数报道的工作都仅限于等离子体诱导的化学转化。在此,我们证明电化学反应也可以在 LSPR 激发下被等离子体纳米粒子加速。我们使用葡萄糖电催化作为模型反应体系,观察到金纳米粒子上的直接等离子体加速电化学反应 (PAER)。实验结果表明,电化学氧化速率随波长和溶液 pH 值的变化以及暗场散射光谱证实,等离子体衰减过程中产生的热电荷载流子是增强电催化性能的原因。基于提出的 PAER 机制,构建了等离子体增强葡萄糖电化学传感器,证明了在 LSPR 激发下非酶传感器的性能得到了提高。这种等离子体加速电化学有望在(生物)电化学能量转换、电分析和电化学器件中得到应用。