Suppr超能文献

金纳米粒子上的直接等离子体加速电化学反应。

Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.

机构信息

State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.

Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University , Nanjing 211198, China.

出版信息

ACS Nano. 2017 Jun 27;11(6):5897-5905. doi: 10.1021/acsnano.7b01637. Epub 2017 May 17.

Abstract

Direct photocatalysis making use of plasmonic metals has attracted significant attention due to the light-harnessing capabilities of these materials associated with localized surface plasmon resonance (LSPR) features. Thus far, most reported work has been limited to plasmon-induced chemical transformations. Herein, we demonstrate that electrochemical reactions can also be accelerated by plasmonic nanoparticles upon LSPR excitation. Using glucose electrocatalysis as a model reaction system, the direct plasmon-accelerated electrochemical reaction (PAER) on gold nanoparticles is observed. The wavelength- and solution-pH-dependent electrochemical oxidation rate and the dark-field scattering spectroscopy results confirm that the hot charge carriers generated during plasmon decay are responsible for the enhanced electrocatalysis performance. Based on the proposed PAER mechanism, a plasmon-improved glucose electrochemical sensor is constructed, demonstrating the enhanced performance of the non-enzyme sensor upon LSPR excitation. This plasmon-accelerated electrochemistry promises potential applications in (bio)electrochemical energy conversion, electroanalysis, and electrochemical devices.

摘要

由于这些材料与局域表面等离子体共振 (LSPR) 特性相关的光捕获能力,直接光催化利用等离子体金属引起了人们的极大关注。到目前为止,大多数报道的工作都仅限于等离子体诱导的化学转化。在此,我们证明电化学反应也可以在 LSPR 激发下被等离子体纳米粒子加速。我们使用葡萄糖电催化作为模型反应体系,观察到金纳米粒子上的直接等离子体加速电化学反应 (PAER)。实验结果表明,电化学氧化速率随波长和溶液 pH 值的变化以及暗场散射光谱证实,等离子体衰减过程中产生的热电荷载流子是增强电催化性能的原因。基于提出的 PAER 机制,构建了等离子体增强葡萄糖电化学传感器,证明了在 LSPR 激发下非酶传感器的性能得到了提高。这种等离子体加速电化学有望在(生物)电化学能量转换、电分析和电化学器件中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验