Evangelisti Edouard, Gogleva Anna, Hainaux Thomas, Doumane Mehdi, Tulin Frej, Quan Clément, Yunusov Temur, Floch Kévin, Schornack Sebastian
Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK.
Present address: Université Libre de Bruxelles, Bruxelles, Belgium.
BMC Biol. 2017 May 11;15(1):39. doi: 10.1186/s12915-017-0379-1.
Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce.
We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features.
These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.
植物病原卵菌导致全球农作物遭受重大经济损失。棕榈疫霉是马铃薯晚疫病病原菌的热带近缘种,可在包括木瓜、可可、油棕、黑胡椒、橡胶、椰子、榴莲、芒果、木薯和柑橘在内的多种热带作物上引发腐烂病。转录组学有助于识别宿主易位的微生物效应蛋白库,这些蛋白可对抗植物防御并对宿主进行重新编程以支持感染。因此,这些研究有助于理解病原体如何致病。尽管棕榈疫霉病害很重要,但用于抗病育种和微生物效应子鉴定的遗传资源却很稀缺。
我们利用模式植物本氏烟草在细胞和分子水平上研究棕榈疫霉对根部的感染。时间分辨双转录组学揭示了病原体和宿主不同的转录组动态。对棕榈疫霉转录组进行从头组装,并对分泌组进行半自动预测和注释,从而能够可靠地鉴定出保守的促进感染的效应子。我们发现其中一个效应子REX3可抑制植物的分泌过程。在对早期转录激活的植物基因进行的一项调查中,我们鉴定出本氏烟草中一个在受感染根尖特异性诱导的基因,该基因编码一种具有危险相关分子特征的肽。
这些结果极大地推进了我们对棕榈疫霉病害的理解,并为棕榈疫霉病原体组学、效应子辅助抗病育种以及诱导对疫霉根感染的抗性奠定了广泛的资源基础。此外,我们寻找与感染相关的分泌基因的方法可应用于其他病原体-宿主相互作用,并不局限于植物。