Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
J Appl Physiol (1985). 2017 Oct 1;123(4):699-709. doi: 10.1152/japplphysiol.00154.2017. Epub 2017 May 11.
Fructose-rich caloric sweeteners induce adverse changes in the metabolism of humans. The study evaluated the effects of high-intensity interval training (HIIT) on a fructose feeding model, focusing on the liver, white adipose tissue (WAT), skeletal muscle, and their interplay. Male C57BL/6 mice were fed for 18 wk one of the following diets: control (C; 5% of total energy from fructose) or fructose (F; 55% of total energy from fructose). In the 10th week, for an additional 8-wk period, the groups were divided into nontrained (NT) or HIIT groups, totaling four groups: C-NT, C-HIIT, F-NT, and F-HIIT. At the end of the experiment, fructose consumption in the F-NT group led to a high systolic blood pressure, high plasma triglycerides, insulin resistance with glucose intolerance, and lower insulin sensitivity. We also observed liver steatosis, adipocyte hypertrophy, and diminished gene expressions of peroxisome proliferator-activated receptor-γ coactivator 1-α and fibronectin type III domain containing 5 (FNDC5; irisin) in this F-NT group. These results were accompanied by decreased gene expressions of nuclear respiratory factor 1 and mitochondrial transcription factor A (markers of mitochondrial biogenesis), and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1 (markers of β-oxidation). HIIT improved all of these data in the C-HIIT and F-HIIT groups. In conclusion, in mice fed a fructose diet, HIIT improved body mass, blood pressure, glucose metabolism, and plasma triglycerides. Liver, WAT, and skeletal muscle were positively modulated by HIIT, indicating HIIT as a coadjutant treatment for diseases affecting these tissues. We investigated the effects of high-intensity interval training (HIIT) in mice fed a fructose-rich diet and the resulting severe negative effect on the liver, white adipose tissue (WAT), and skeletal muscle, which reduced the expression of fibronectin type III domain containing 5 (FNDC5, irisin) and PGC1α and, consequently, affected markers of mitochondrial biogenesis and β-oxidation. Because HIIT may block these adverse effects in all of these three tissues, it might be suggested that it functions as a coadjutant treatment in combatting the alterations caused by high-fructose intake.
富含果糖的热量型甜味剂会引起人体代谢的不良变化。本研究评估了高强度间歇训练(HIIT)对果糖喂养模型的影响,重点关注肝脏、白色脂肪组织(WAT)、骨骼肌及其相互作用。雄性 C57BL/6 小鼠用以下饮食之一喂养 18 周:对照(C;总能量的 5%来自果糖)或果糖(F;总能量的 55%来自果糖)。在第 10 周,为另外 8 周,将两组分为未训练(NT)或 HIIT 组,共 4 组:C-NT、C-HIIT、F-NT 和 F-HIIT。在实验结束时,F-NT 组的果糖摄入导致收缩压升高、血浆甘油三酯升高、胰岛素抵抗伴葡萄糖耐量受损和胰岛素敏感性降低。我们还观察到该 F-NT 组的肝脏脂肪变性、脂肪细胞肥大和过氧化物酶体增殖物激活受体-γ共激活因子 1-α和纤维连接蛋白 III 结构域包含 5(FNDC5;鸢尾素)基因表达降低。这些结果伴随着核呼吸因子 1 和线粒体转录因子 A(线粒体生物发生标志物)以及过氧化物酶体增殖物激活受体-α和肉碱棕榈酰转移酶 1(β-氧化标志物)基因表达的降低。HIIT 改善了 C-HIIT 和 F-HIIT 组的所有这些数据。总之,在摄入果糖的小鼠中,HIIT 改善了体重、血压、葡萄糖代谢和血浆甘油三酯。HIIT 对肝脏、WAT 和骨骼肌进行了正向调节,表明 HIIT 是一种辅助治疗影响这些组织的疾病的方法。我们研究了 HIIT 在摄入富含果糖的饮食的小鼠中的作用及其对肝脏、白色脂肪组织(WAT)和骨骼肌的严重负面影响,这降低了纤维连接蛋白 III 结构域包含 5(FNDC5,鸢尾素)和 PGC1α 的表达,进而影响了线粒体生物发生和β-氧化的标志物。由于 HIIT 可能会阻止这三种组织中的所有这些不良反应,因此可以认为它是对抗高果糖摄入引起的改变的辅助治疗方法。