Suppr超能文献

用于研究纤维化重塑的工程化3D心脏纤维化组织

Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling.

作者信息

Sadeghi Amir Hossein, Shin Su Ryon, Deddens Janine C, Fratta Giuseppe, Mandla Serena, Yazdi Iman K, Prakash Gyan, Antona Silvia, Demarchi Danilo, Buijsrogge Marc P, Sluijter Joost P G, Hjortnaes Jesper, Khademhosseini Ali

机构信息

Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA.

出版信息

Adv Healthc Mater. 2017 Jun;6(11). doi: 10.1002/adhm.201601434. Epub 2017 May 12.

Abstract

Activation of cardiac fibroblasts into myofibroblasts is considered to play an essential role in cardiac remodeling and fibrosis. A limiting factor in studying this process is the spontaneous activation of cardiac fibroblasts when cultured on two-dimensional (2D) culture plates. In this study, a simplified three-dimensional (3D) hydrogel platform of contractile cardiac tissue, stimulated by transforming growth factor-β1 (TGF-β1), is presented to recapitulate a fibrogenic microenvironment. It is hypothesized that the quiescent state of cardiac fibroblasts can be maintained by mimicking the mechanical stiffness of native heart tissue. To test this hypothesis, a 3D cell culture model consisting of cardiomyocytes and cardiac fibroblasts encapsulated within a mechanically engineered gelatin methacryloyl hydrogel, is developed. The study shows that cardiac fibroblasts maintain their quiescent phenotype in mechanically tuned hydrogels. Additionally, treatment with a beta-adrenergic agonist increases beating frequency, demonstrating physiologic-like behavior of the heart constructs. Subsequently, quiescent cardiac fibroblasts within the constructs are activated by the exogenous addition of TGF-β1. The expression of fibrotic protein markers (and the functional changes in mechanical stiffness) in the fibrotic-like tissues are analyzed to validate the model. Overall, this 3D engineered culture model of contractile cardiac tissue enables controlled activation of cardiac fibroblasts, demonstrating the usability of this platform to study fibrotic remodeling.

摘要

心脏成纤维细胞激活转变为肌成纤维细胞被认为在心脏重塑和纤维化过程中起着至关重要的作用。研究这一过程的一个限制因素是,当在二维(2D)培养板上培养时,心脏成纤维细胞会自发激活。在本研究中,提出了一种由转化生长因子-β1(TGF-β1)刺激的收缩性心脏组织的简化三维(3D)水凝胶平台,以重现纤维化微环境。据推测,通过模拟天然心脏组织的机械硬度,可以维持心脏成纤维细胞的静止状态。为了验证这一假设,开发了一种3D细胞培养模型,该模型由包裹在机械工程化甲基丙烯酰明胶水凝胶中的心肌细胞和心脏成纤维细胞组成。研究表明,心脏成纤维细胞在机械调节的水凝胶中保持其静止表型。此外,用β-肾上腺素能激动剂处理可增加搏动频率,证明心脏构建体具有类似生理的行为。随后,通过外源添加TGF-β1激活构建体内的静止心脏成纤维细胞。分析纤维化样组织中纤维化蛋白标志物的表达(以及机械硬度的功能变化)以验证该模型。总体而言,这种收缩性心脏组织的3D工程培养模型能够可控地激活心脏成纤维细胞,证明了该平台在研究纤维化重塑方面的可用性。

相似文献

1
Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling.
Adv Healthc Mater. 2017 Jun;6(11). doi: 10.1002/adhm.201601434. Epub 2017 May 12.
3
Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
Exp Biol Med (Maywood). 2018 Apr;243(7):601-612. doi: 10.1177/1535370218761628. Epub 2018 Mar 4.
5
Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts.
Oncotarget. 2016 Nov 29;7(48):78516-78531. doi: 10.18632/oncotarget.12392.
7
Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation.
Adv Healthc Mater. 2019 Feb;8(3):e1801146. doi: 10.1002/adhm.201801146. Epub 2019 Jan 4.
8
Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
Acta Biomater. 2017 Jun;55:120-130. doi: 10.1016/j.actbio.2017.04.027. Epub 2017 Apr 25.

引用本文的文献

1
Phenotypic screening uncovered anti-myocardial fibrosis candidates using a novel 3D myocardial tissue under hypoxia.
Acta Pharm Sin B. 2025 Jun;15(6):3008-3024. doi: 10.1016/j.apsb.2025.04.025. Epub 2025 Apr 29.
2
Dressed in Collagen: 2D and 3D Cardiac Fibrosis Models.
Int J Mol Sci. 2025 Mar 26;26(7):3038. doi: 10.3390/ijms26073038.
3
Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations.
Bioengineering (Basel). 2024 Dec 3;11(12):1220. doi: 10.3390/bioengineering11121220.
5
Construction of cardiac fibrosis for biomedical research.
Smart Med. 2023 Aug 16;2(3):e20230020. doi: 10.1002/SMMD.20230020. eCollection 2023 Aug.
7
Engineered hydrogels for mechanobiology.
Nat Rev Methods Primers. 2022 Dec 15;2:98. doi: 10.1038/s43586-022-00179-7.
8
Biomimetic Electrospun Scaffold-Based In Vitro Model Resembling the Hallmarks of Human Myocardial Fibrotic Tissue.
ACS Biomater Sci Eng. 2023 Jul 10;9(7):4368-4380. doi: 10.1021/acsbiomaterials.3c00483. Epub 2023 Jun 8.
9
Organs-on-a-chip: a union of tissue engineering and microfabrication.
Trends Biotechnol. 2023 Mar;41(3):410-424. doi: 10.1016/j.tibtech.2022.12.018. Epub 2023 Jan 31.
10
Oxygen-generating microparticles downregulate HIF-1α expression, increase cardiac contractility, and mitigate ischemic injury.
Acta Biomater. 2023 Mar 15;159:211-225. doi: 10.1016/j.actbio.2023.01.030. Epub 2023 Jan 18.

本文引用的文献

1
Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs.
Adv Funct Mater. 2017 Mar 24;27(12). doi: 10.1002/adfm.201605352. Epub 2017 Jan 17.
2
Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development.
Appl In Vitro Toxicol. 2016 Jun 1;2(2):82-96. doi: 10.1089/aivt.2016.0002.
3
Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.
Adv Healthc Mater. 2017 Feb;6(3). doi: 10.1002/adhm.201600571. Epub 2016 Dec 1.
4
Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
Small. 2016 Jul;12(27):3677-89. doi: 10.1002/smll.201600178. Epub 2016 Jun 2.
5
The Janus face of myofibroblasts in the remodeling heart.
J Mol Cell Cardiol. 2016 Feb;91:35-41. doi: 10.1016/j.yjmcc.2015.11.017. Epub 2015 Dec 12.
6
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
Biomaterials. 2015 Dec;73:254-71. doi: 10.1016/j.biomaterials.2015.08.045. Epub 2015 Aug 28.
7
Fibrosis--A Common Pathway to Organ Injury and Failure.
N Engl J Med. 2015 Jul 2;373(1):96. doi: 10.1056/NEJMc1504848.
8
3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts.
Adv Healthc Mater. 2015 Sep 16;4(13):1961-71. doi: 10.1002/adhm.201500331. Epub 2015 Jun 30.
9
Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy.
Am J Physiol Heart Circ Physiol. 2015 Aug 15;309(4):H532-42. doi: 10.1152/ajpheart.00299.2015. Epub 2015 Jun 19.
10
Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease.
J Cell Sci. 2015 May 15;128(10):1865-75. doi: 10.1242/jcs.162891. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验