Jaeger Carsten, Méret Michaël, Schmitt Clemens A, Lisec Jan
Medical Department of Hematology, Oncology, and Tumor Immunology, and Molecular Cancer Research Center (MKFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.
Berlin Institute of Health (BIH), Berlin, Germany.
Rapid Commun Mass Spectrom. 2017 Aug 15;31(15):1261-1266. doi: 10.1002/rcm.7905.
A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra.
We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated.
Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] ions.
A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available in the latest version of R package InterpretMSSpectrum.
复杂生物提取物代谢谱分析中的一个瓶颈是对理想情况下所有包含的、化学性质高度多样的小分子进行可靠的、无监督注释。一旦知道化合物的正确中性质量,最近将分子式预测与虚拟碎裂相结合的计算策略就能实现可靠的从头注释。然而,目前用于自动加合离子分配的软件解决方案要么无法公开获取,要么仅针对少数实验电喷雾电离(ESI)质谱进行了验证。
我们在此介绍findMAIN(查找主要加合离子),这是一种解释ESI质谱的新启发式方法。findMAIN根据加合物和相关电离产物的解释强度、质量准确度和同位素电荷一致性对质谱进行评分,并注释(去)质子化分子和加合离子的峰。该方法针对在不同高分辨率质谱仪(轨道阱和飞行时间)上获得的1141种化学性质多样的标准化合物的ESI正模式光谱进行了验证。评估了对不纯光谱的稳健性。
高达83%的光谱实现了正确的加合离子分配。性能与化合物类别和质谱平台无关。该算法对光谱污染具有高度耐受性,如共洗脱化合物的示例所示,以及通过光谱的成对混合系统地证明。当与最先进的分子式工具MS-FINDER结合使用时,77%的光谱获得了正确的分子式。它优于测试的作为潜在替代方案的“暴力”方法和当前最先进的注释包。该启发式方法的局限性在于电离性差的化合物和形成[M]离子的阳离子化合物。
提出了一种新的、经过验证的解释ESI质谱的方法,填补了非靶向代谢组学工作流程中的一个空白。它在R包InterpretMSSpectrum的最新版本中可免费获得。