Suppr超能文献

蛋白质组共进化揭示的蛋白质相互作用网络。

Protein interaction networks revealed by proteome coevolution.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98105, USA.

Institute for Protein Design, University of Washington, Seattle, WA 98105, USA.

出版信息

Science. 2019 Jul 12;365(6449):185-189. doi: 10.1126/science.aaw6718. Epub 2019 Jul 11.

Abstract

Residue-residue coevolution has been observed across a number of protein-protein interfaces, but the extent of residue coevolution between protein families on the whole-proteome scale has not been systematically studied. We investigate coevolution between 5.4 million pairs of proteins in and between 3.9 millions pairs in We find strong coevolution for binary complexes involved in metabolism and weaker coevolution for larger complexes playing roles in genetic information processing. We take advantage of this coevolution, in combination with structure modeling, to predict protein-protein interactions (PPIs) with an accuracy that benchmark studies suggest is considerably higher than that of proteome-wide two-hybrid and mass spectrometry screens. We identify hundreds of previously uncharacterized PPIs in and that both add components to known protein complexes and networks and establish the existence of new ones.

摘要

残基-残基共进化在许多蛋白质-蛋白质界面中都有观察到,但在整个蛋白质组范围内蛋白质家族之间的残基共进化的程度尚未得到系统研究。我们研究了 和 中 540 万对蛋白质之间以及 390 万对蛋白质之间的共进化。我们发现,参与代谢的二元复合物之间存在强烈的共进化,而在遗传信息处理中起更大作用的较大复合物之间的共进化则较弱。我们利用这种共进化,结合结构建模,以高于基于蛋白质组的双杂交和质谱筛选的基准研究表明的准确性来预测蛋白质-蛋白质相互作用 (PPI)。我们在 和 中鉴定了数百个以前未表征的 PPI,它们既为已知蛋白质复合物和网络添加了成分,又建立了新的复合物和网络。

相似文献

1
Protein interaction networks revealed by proteome coevolution.蛋白质组共进化揭示的蛋白质相互作用网络。
Science. 2019 Jul 12;365(6449):185-189. doi: 10.1126/science.aaw6718. Epub 2019 Jul 11.

引用本文的文献

7
Impact of phylogeny on the inference of functional sectors from protein sequence data.系统发育对从蛋白质序列数据推断功能区的影响。
PLoS Comput Biol. 2024 Sep 23;20(9):e1012091. doi: 10.1371/journal.pcbi.1012091. eCollection 2024 Sep.
10
Pairing interacting protein sequences using masked language modeling.使用掩蔽语言模型对相互作用的蛋白质序列进行配对。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311887121. doi: 10.1073/pnas.2311887121. Epub 2024 Jun 24.

本文引用的文献

2
Inferring interaction partners from protein sequences using mutual information.利用互信息从蛋白质序列推断相互作用的伙伴。
PLoS Comput Biol. 2018 Nov 13;14(11):e1006401. doi: 10.1371/journal.pcbi.1006401. eCollection 2018 Nov.
8
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
9
Inferring interaction partners from protein sequences.从蛋白质序列推断相互作用伙伴。
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12180-12185. doi: 10.1073/pnas.1606762113. Epub 2016 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验