Suppr超能文献

磁共振成像评估肾纤维化的最新进展

Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis.

作者信息

Li Jia, An Changlong, Kang Lei, Mitch William E, Wang Yanlin

机构信息

Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX.

Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX.

出版信息

Adv Chronic Kidney Dis. 2017 May;24(3):150-153. doi: 10.1053/j.ackd.2017.03.005.

Abstract

CKD is a global public health problem. Renal fibrosis is a final common pathway leading to progressive loss of function in CKD. The degree of renal fibrosis predicts the prognosis of CKD. Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the development of renal fibrosis, which may yield novel therapeutic strategy for fibrotic kidney disease. Therefore, it is imperative to accurately assess the degree of renal fibrosis noninvasively to identify those patients who can benefit from antifibrotic therapy. In this review, we summarize recent advances in the assessment of renal fibrosis by magnetic resonance imaging.

摘要

慢性肾脏病是一个全球性的公共卫生问题。肾纤维化是导致慢性肾脏病功能进行性丧失的最终共同途径。肾纤维化程度可预测慢性肾脏病的预后。最近的研究表明,骨髓来源的成纤维细胞对肾纤维化的发展有显著贡献,这可能为纤维化肾病带来新的治疗策略。因此,必须通过非侵入性方法准确评估肾纤维化程度,以确定那些能从抗纤维化治疗中获益的患者。在本综述中,我们总结了磁共振成像评估肾纤维化的最新进展。

相似文献

1
Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis.
Adv Chronic Kidney Dis. 2017 May;24(3):150-153. doi: 10.1053/j.ackd.2017.03.005.
2
Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology.
PLoS One. 2018 Jul 16;13(7):e0200259. doi: 10.1371/journal.pone.0200259. eCollection 2018.
3
Value of multiparametric magnetic resonance imaging for evaluating chronic kidney disease and renal fibrosis.
Eur Radiol. 2023 Aug;33(8):5211-5221. doi: 10.1007/s00330-023-09674-1. Epub 2023 May 6.
4
Could MRI Be Used To Image Kidney Fibrosis? A Review of Recent Advances and Remaining Barriers.
Clin J Am Soc Nephrol. 2017 Jun 7;12(6):1019-1028. doi: 10.2215/CJN.07900716. Epub 2017 Mar 15.
7
Advances in imaging techniques to assess kidney fibrosis.
Ren Fail. 2023 Dec;45(1):2171887. doi: 10.1080/0886022X.2023.2171887.
8
The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis.
Kidney Int. 2017 Dec;92(6):1433-1443. doi: 10.1016/j.kint.2017.04.021. Epub 2017 Jul 21.
10
Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis.
Drug Discov Today. 2021 Aug;26(8):2053-2063. doi: 10.1016/j.drudis.2021.02.016. Epub 2021 Feb 19.

引用本文的文献

1
Evaluation of multiparametric MRI and clinical indicators for renal fibrosis in chronic kidney disease.
Quant Imaging Med Surg. 2025 Jul 1;15(7):6200-6216. doi: 10.21037/qims-2024-2532. Epub 2025 Jun 25.
2
Magnetic resonance diffusion tensor imaging is superior to arterial spin labeling in detecting renal allograft fibrosis.
Quant Imaging Med Surg. 2025 Apr 1;15(4):3211-3221. doi: 10.21037/qims-24-1023. Epub 2025 Mar 14.
4
Radiology of fibrosis part III: genitourinary system.
J Transl Med. 2024 Jul 3;22(1):616. doi: 10.1186/s12967-024-05333-1.
5
Noninvasive diagnosis of interstitial fibrosis in chronic kidney disease: a systematic review and meta-analysis.
Ren Fail. 2024 Dec;46(2):2367021. doi: 10.1080/0886022X.2024.2367021. Epub 2024 Jun 28.
6
Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets.
J Clin Med. 2024 Mar 25;13(7):1881. doi: 10.3390/jcm13071881.
7
Native T mapping for non-invasive quantitative evaluation of renal function and renal fibrosis in patients with chronic kidney disease.
Quant Imaging Med Surg. 2023 Aug 1;13(8):5058-5071. doi: 10.21037/qims-22-1304. Epub 2023 May 22.
8
The value of functional magnetic resonance imaging in the evaluation of diabetic kidney disease: a systematic review and meta-analysis.
Front Endocrinol (Lausanne). 2023 Jul 7;14:1226830. doi: 10.3389/fendo.2023.1226830. eCollection 2023.
10
Advances in Understanding the Effects of Erythropoietin on Renal Fibrosis.
Front Med (Lausanne). 2020 Feb 21;7:47. doi: 10.3389/fmed.2020.00047. eCollection 2020.

本文引用的文献

1
CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis.
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H815-21. doi: 10.1152/ajpheart.00948.2015. Epub 2016 Aug 5.
4
Pathophysiology of gadolinium-associated systemic fibrosis.
Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F1-F11. doi: 10.1152/ajprenal.00166.2016. Epub 2016 May 4.
5
Depletion of CD8+ T Cells Exacerbates CD4+ T Cell-Induced Monocyte-to-Fibroblast Transition in Renal Fibrosis.
J Immunol. 2016 Feb 15;196(4):1874-81. doi: 10.4049/jimmunol.1501232. Epub 2016 Jan 15.
6
JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.
J Am Soc Nephrol. 2015 Dec;26(12):3060-71. doi: 10.1681/ASN.2014070717. Epub 2015 Jun 1.
7
T Helper 2 Cytokine Signaling in Bone Marrow-Derived Fibroblasts: A Target for Renal Fibrosis.
J Am Soc Nephrol. 2015 Dec;26(12):2896-8. doi: 10.1681/ASN.2015040469. Epub 2015 Jun 1.
8
Improvement of renal diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging at 3T.
Magn Reson Imaging. 2015 Jul;33(6):701-8. doi: 10.1016/j.mri.2015.02.023. Epub 2015 Feb 27.
10
Magnetic resonance elastography of abdomen.
Abdom Imaging. 2015 Apr;40(4):745-59. doi: 10.1007/s00261-014-0315-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验