Suppr超能文献

整合基于临床代谢组学的生物标志物发现和临床药理学,以实现精准医学。

Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine.

机构信息

Division of Analytical Biosciences, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.

Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.

出版信息

Eur J Pharm Sci. 2017 Nov 15;109S:S15-S21. doi: 10.1016/j.ejps.2017.05.018. Epub 2017 May 11.

Abstract

Novel developments in biomarkers discovery are essential in modern health care, notably in treatment individualization and precision medicine. Clinical metabolomics, which aims to identify small molecule metabolites present in patient-derived samples, has attracted much attention to support discovery of novel biomarkers. However, the step from discriminatory features of disease states towards biomarkers that can truly individualize treatments is challenging. Biomarkers used for treatment individualization can either be dynamic or static prognostic biomarkers. Dynamic biomarkers are relevant for describing the clinical response, including dynamical disease progression and associated treatment response. Static (prognostic) biomarkers do not describe but rather predict a clinical response, and typically reflect aspects of the physiological state of a patient related to drug treatment response or disease progression dynamics. Pharmacokinetic-pharmacodynamic (PK-PD) modeling represents an established approach for drug treatment individualization based on drug exposure or treatment response biomarkers, as well as for the description of disease progression dynamics. Here, we discuss how novel treatment individualization biomarkers can be identified using a clinical metabolomics-based approach, and how concepts inspired from the field of PK-PD modeling can be integrated in this process in order to increase the clinical relevance of identified biomarkers and precision medicine.

摘要

在现代医疗保健中,新的生物标志物发现的发展至关重要,特别是在治疗个体化和精准医学方面。临床代谢组学旨在鉴定来自患者样本中的小分子代谢物,它受到了广泛关注,以支持新的生物标志物的发现。然而,从疾病状态的判别特征到能够真正实现个体化治疗的生物标志物是具有挑战性的。用于治疗个体化的生物标志物可以是动态或静态的预后生物标志物。动态生物标志物与描述临床反应有关,包括疾病的动态进展和相关的治疗反应。静态(预后)生物标志物不描述,而是预测临床反应,通常反映与药物治疗反应或疾病进展动力学相关的患者生理状态的方面。药代动力学-药效动力学(PK-PD)建模是一种基于药物暴露或治疗反应生物标志物的药物治疗个体化的既定方法,也可用于描述疾病进展动力学。在这里,我们讨论了如何使用基于临床代谢组学的方法来识别新的治疗个体化生物标志物,以及如何将 PK-PD 建模领域的概念整合到这个过程中,以提高所识别生物标志物的临床相关性和精准医学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验