Suppr超能文献

顶端肌动蛋白丝的组织创新驱动花粉管快速生长和转向。

Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning.

机构信息

Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

出版信息

Mol Plant. 2017 Jul 5;10(7):930-947. doi: 10.1016/j.molp.2017.05.002. Epub 2017 May 10.

Abstract

Polarized tip growth is a fundamental cellular process in many eukaryotes. In this study, we examined the dynamic restructuring of the actin cytoskeleton and its relationship to vesicle transport during pollen tip growth in Arabidopsis. We found that actin filaments originating from the apical membrane form a specialized structure consisting of longitudinally aligned actin bundles at the cortex and inner cytoplasmic filaments with a distinct distribution. Using actin-based pharmacological treatments and genetic mutants in combination with FRAP (fluorescence recovery after photobleaching) technology to visualize the transport of vesicles within the growth domain of pollen tubes, we demonstrated that cortical actin filaments facilitate tip-ward vesicle transport. We also discovered that the inner apical actin filaments prevent backward movement of vesicles, thus ensuring that sufficient vesicles accumulate at the pollen tube tip to support the rapid growth of the pollen tube. The combinatorial effect of cortical and internal apical actin filaments perfectly explains the generation of the inverted "V" cone-shaped vesicle distribution pattern at the pollen tube tip. When pollen tubes turn, apical actin filaments at the facing side undergo depolymerization and repolymerization to reorient the apical actin structure toward the new growth direction. This actin restructuring precedes vesicle accumulation and changes in tube morphology. Thus, our study provides new insights into the functional relationship between actin dynamics and vesicle transport during rapid and directional pollen tube growth.

摘要

极性顶端生长是许多真核生物的基本细胞过程。在这项研究中,我们研究了拟南芥花粉顶端生长过程中肌动蛋白细胞骨架的动态重构及其与囊泡运输的关系。我们发现,起源于顶端膜的肌动蛋白丝形成了一种特殊的结构,由皮层中纵向排列的肌动蛋白束和具有独特分布的细胞质内肌动蛋白丝组成。我们使用基于肌动蛋白的药理学处理和与 FRAP(光漂白后荧光恢复)技术结合的遗传突变体来可视化花粉管生长域内囊泡的运输,证明了皮层肌动蛋白丝有助于向顶端运输囊泡。我们还发现,顶端内部肌动蛋白丝阻止囊泡向后移动,从而确保足够的囊泡在花粉管顶端积累,以支持花粉管的快速生长。皮层和内部顶端肌动蛋白丝的组合效应完美地解释了花粉管顶端倒置的“V”锥形囊泡分布模式的产生。当花粉管转弯时,对面的顶端肌动蛋白丝发生解聚和重新聚合,使顶端肌动蛋白结构朝向新的生长方向重新定向。这种肌动蛋白重构先于囊泡积累和管形态的变化。因此,我们的研究为快速和定向花粉管生长过程中肌动蛋白动力学和囊泡运输之间的功能关系提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验