Suppr超能文献

用于快速评估ERG钾通道亲和力的计算工具

Computational Tool for Fast Evaluation of ERG K Channel Affinity.

作者信息

Chemi Giulia, Gemma Sandra, Campiani Giuseppe, Brogi Simone, Butini Stefania, Brindisi Margherita

机构信息

European Research Centre for Drug Discovery (NatSynDrugs), University of SienaSiena, Italy.

Department of Biotechnology, Chemistry and Pharmacy, University of SienaSiena, Italy.

出版信息

Front Chem. 2017 Feb 23;5:7. doi: 10.3389/fchem.2017.00007. eCollection 2017.

Abstract

The development of a novel comprehensive approach for the prediction of ERG activity is herein presented. Software Phase has been used to derive a 3D-QSAR model, employing as alignment rule a common pharmacophore built on a subset of 22 highly active compounds (threshold : 50 nM) against ERG K channel. Five features comprised the pharmacophore: two aromatic rings (R and R), one hydrogen-bond acceptor (A), one hydrophobic site (H), and one positive ionizable function (P). The sequential 3D-QSAR model developed with a set of 421 compounds (randomly divided in training and test set) yielded a test set () = 0.802 and proved to be predictive with respect to an external test set of 309 compounds that were not used to generate the model ([Formula: see text] = 0.860). Furthermore, the model was submitted to an validation for assessing the reliability of the approach, by applying a decoys set, evaluating the Güner and Henry score () and the Enrichment Factor (), and by using the ROC curve analysis. The outcome demonstrated the high predictive power of the inclusive 3D-QSAR model developed for the ERG K channel blockers, confirming the fundamental validity of the chosen approach for obtaining a fast proprietary cardiotoxicity predictive tool to be employed for rationally designing compounds with reduced ERG K channel activity at the early steps of the drug discovery trajectory.

摘要

本文介绍了一种用于预测ERG活性的新型综合方法的开发。软件阶段已用于推导3D-QSAR模型,采用基于22种针对ERG K通道的高活性化合物(阈值:50 nM)子集构建的通用药效团作为对齐规则。药效团由五个特征组成:两个芳香环(R和R)、一个氢键受体(A)、一个疏水位点(H)和一个正可电离官能团(P)。用一组421种化合物(随机分为训练集和测试集)开发的顺序3D-QSAR模型产生了测试集()= 0.802,并证明对未用于生成该模型的309种化合物的外部测试集具有预测性([公式:见文本] = 0.860)。此外,通过应用诱饵集、评估Güner和Henry评分()和富集因子()以及使用ROC曲线分析,将该模型提交给验证以评估该方法的可靠性。结果证明了为ERG K通道阻滞剂开发的包容性3D-QSAR模型具有高预测能力,证实了所选择方法在获得快速专有的心脏毒性预测工具以用于在药物发现轨迹的早期合理设计具有降低的ERG K通道活性的化合物方面的基本有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/5408157/046305dba3c9/fchem-05-00007-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验