Suppr超能文献

用可解释的分类和回归模型增强 hERG 风险评估。

Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models.

机构信息

Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.

Center for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.

出版信息

Chem Res Toxicol. 2024 Jun 17;37(6):910-922. doi: 10.1021/acs.chemrestox.3c00400. Epub 2024 May 23.

Abstract

The human Ether-à-go-go-Related Gene (hERG) is a transmembrane protein that regulates cardiac action potential, and its inhibition can induce a potentially deadly cardiac syndrome. tests help identify hERG blockers at early stages; however, the high cost motivates searching for alternative, cost-effective methods. The primary goal of this study was to enhance the Pred-hERG tool for predicting hERG blockage. To achieve this, we developed new QSAR models that incorporated additional data, updated existing classificatory and multiclassificatory models, and introduced new regression models. Notably, we integrated SHAP (SHapley Additive exPlanations) values to offer a visual interpretation of these models. Utilizing the latest data from ChEMBL v30, encompassing over 14,364 compounds with hERG data, our binary and multiclassification models outperformed both the previous iteration of Pred-hERG and all publicly available models. Notably, the new version of our tool introduces a regression model for predicting hERG activity (pIC50). The optimal model demonstrated an of 0.61 and an RMSE of 0.48, surpassing the only available regression model in the literature. Pred-hERG 5.0 now offers users a swift, reliable, and user-friendly platform for the early assessment of chemically induced cardiotoxicity through hERG blockage. The tool provides versatile outcomes, including (i) classificatory predictions of hERG blockage with prediction reliability, (ii) multiclassificatory predictions of hERG blockage with reliability, (iii) regression predictions with estimated pIC values, and (iv) probability maps illustrating the contribution of chemical fragments for each prediction. Furthermore, we implemented explainable AI analysis (XAI) to visualize SHAP values, providing insights into the contribution of each feature to binary classification predictions. A consensus prediction calculated based on the predictions of the three developed models is also present to assist the user's decision-making process. Pred-hERG 5.0 has been designed to be user-friendly, making it accessible to users without computational or programming expertise. The tool is freely available at http://predherg.labmol.com.br.

摘要

人类 Ether-à-go-go 相关基因(hERG)是一种跨膜蛋白,调节心脏动作电位,其抑制可引起潜在致命的心脏综合征。测试有助于在早期阶段识别 hERG 阻断剂;然而,高昂的成本促使人们寻找替代的、具有成本效益的方法。本研究的主要目标是增强 Pred-hERG 工具以预测 hERG 阻断。为此,我们开发了新的 QSAR 模型,纳入了额外的数据,更新了现有的分类和多分类模型,并引入了新的回归模型。值得注意的是,我们整合了 SHAP(SHapley Additive exPlanations)值,为这些模型提供了可视化解释。利用 ChEMBL v30 的最新数据,包含超过 14364 种具有 hERG 数据的化合物,我们的二进制和多分类模型优于前一版本的 Pred-hERG 和所有公开可用的模型。值得注意的是,我们工具的新版本引入了一个用于预测 hERG 活性(pIC50)的回归模型。最优模型的 AUC 为 0.61,RMSE 为 0.48,超过了文献中唯一可用的回归模型。Pred-hERG 5.0 现在为用户提供了一个快速、可靠和用户友好的平台,用于通过 hERG 阻断早期评估化学诱导的心脏毒性。该工具提供了多种结果,包括(i)hERG 阻断的分类预测,具有预测可靠性,(ii)hERG 阻断的多分类预测,具有可靠性,(iii)具有估计 pIC 值的回归预测,以及(iv)概率图,说明每个预测的化学片段的贡献。此外,我们实施了可解释 AI 分析(XAI)来可视化 SHAP 值,提供了对每个特征对二进制分类预测的贡献的深入了解。还基于三个开发模型的预测计算了共识预测,以帮助用户的决策过程。Pred-hERG 5.0 的设计旨在易于使用,即使是没有计算或编程专业知识的用户也可以使用。该工具可在 http://predherg.labmol.com.br 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf1c/11187631/79319fcd16f4/tx3c00400_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验