Suppr超能文献

Pred-hERG:一种新型的可通过网络访问的预测心脏毒性的计算工具。

Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity.

作者信息

Braga Rodolpho C, Alves Vinicius M, Silva Meryck F B, Muratov Eugene, Fourches Denis, Lião Luciano M, Tropsha Alexander, Andrade Carolina H

机构信息

Labmol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, Goiás 74605-170, Brazil phone: +55 62 3209-6451; fax: +55 62 3209-6037.

Chemistry Institute, Federal University of Goias, P. O. Box 131, Goiania, Goiás 74001-970, Brazil.

出版信息

Mol Inform. 2015 Oct;34(10):698-701. doi: 10.1002/minf.201500040. Epub 2015 Jul 20.

Abstract

The blockage of the hERG K(+) channels is closely associated with lethal cardiac arrhythmia. The notorious ligand promiscuity of this channel earmarked hERG as one of the most important antitargets to be considered in early stages of drug development process. Herein we report on the development of an innovative and freely accessible web server for early identification of putative hERG blockers and non-blockers in chemical libraries. We have collected the largest publicly available curated hERG dataset of 5,984 compounds. We succeed in developing robust and externally predictive binary (CCR≈0.8) and multiclass models (accuracy≈0.7). These models are available as a web-service freely available for public at http://labmol.farmacia.ufg.br/predherg/. Three following outcomes are available for the users: prediction by binary model, prediction by multi-class model, and the probability maps of atomic contribution. The Pred-hERG will be continuously updated and upgraded as new information became available.

摘要

hERG钾离子通道的阻断与致命性心律失常密切相关。该通道臭名昭著的配体混杂性使其成为药物研发早期阶段需要考虑的最重要的非靶向之一。在此,我们报告了一个创新的、可免费访问的网络服务器的开发情况,该服务器用于在化学文库中早期识别潜在的hERG阻断剂和非阻断剂。我们收集了最大的公开可用的经过整理的包含5984种化合物的hERG数据集。我们成功开发出了强大的、具有外部预测性的二元模型(CCR≈0.8)和多类模型(准确率≈0.7)。这些模型可作为网络服务在http://labmol.farmacia.ufg.br/predherg/上免费向公众提供。用户可以获得以下三个结果:二元模型预测、多类模型预测以及原子贡献概率图。随着新信息的出现,Pred-hERG将不断更新和升级。

相似文献

1
Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity.
Mol Inform. 2015 Oct;34(10):698-701. doi: 10.1002/minf.201500040. Epub 2015 Jul 20.
2
Tuning HERG out: antitarget QSAR models for drug development.
Curr Top Med Chem. 2014;14(11):1399-415. doi: 10.2174/1568026614666140506124442.
3
Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models.
Chem Res Toxicol. 2024 Jun 17;37(6):910-922. doi: 10.1021/acs.chemrestox.3c00400. Epub 2024 May 23.
4
Towards a Structural View of Drug Binding to hERG K Channels.
Trends Pharmacol Sci. 2017 Oct;38(10):899-907. doi: 10.1016/j.tips.2017.06.004. Epub 2017 Jul 12.
5
A Computational Pipeline to Predict Cardiotoxicity: From the Atom to the Rhythm.
Circ Res. 2020 Apr 10;126(8):947-964. doi: 10.1161/CIRCRESAHA.119.316404. Epub 2020 Feb 24.
6
Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.
J Chem Inf Model. 2017 May 22;57(5):1013-1017. doi: 10.1021/acs.jcim.7b00194. Epub 2017 May 10.
7
Compilation and physicochemical classification analysis of a diverse hERG inhibition database.
J Comput Aided Mol Des. 2016 Dec;30(12):1175-1188. doi: 10.1007/s10822-016-9986-0. Epub 2016 Oct 25.
8
In silico prediction of the chemical block of human ether-a-go-go-related gene (hERG) K+ current.
J Physiol Sci. 2008 Dec;58(7):459-70. doi: 10.2170/physiolsci.RV-0114-08-07-R1. Epub 2008 Nov 27.
9
CardioDPi: An explainable deep-learning model for identifying cardiotoxic chemicals targeting hERG, Cav1.2, and Nav1.5 channels.
J Hazard Mater. 2024 Aug 5;474:134724. doi: 10.1016/j.jhazmat.2024.134724. Epub 2024 May 24.

引用本文的文献

3
HERGAI: an artificial intelligence tool for structure-based prediction of hERG inhibitors.
J Cheminform. 2025 Jul 24;17(1):110. doi: 10.1186/s13321-025-01063-8.
10
Nitazene opioids and the heart: Identification of a cardiac ion channel target for illicit nitazene opioids.
J Mol Cell Cardiol Plus. 2024 Dec;10:100118. doi: 10.1016/j.jmccpl.2024.100118.

本文引用的文献

1
Tuning HERG out: antitarget QSAR models for drug development.
Curr Top Med Chem. 2014;14(11):1399-415. doi: 10.2174/1568026614666140506124442.
2
Cardiac safety assays.
Curr Opin Pharmacol. 2014 Apr;15:16-21. doi: 10.1016/j.coph.2013.11.004. Epub 2013 Nov 27.
4
JSME: a free molecule editor in JavaScript.
J Cheminform. 2013 May 21;5:24. doi: 10.1186/1758-2946-5-24. eCollection 2013.
5
Drug discovery applications for KNIME: an open source data mining platform.
Curr Top Med Chem. 2012;12(18):1965-79. doi: 10.2174/156802612804910331.
6
Does rational selection of training and test sets improve the outcome of QSAR modeling?
J Chem Inf Model. 2012 Oct 22;52(10):2570-8. doi: 10.1021/ci300338w. Epub 2012 Oct 3.
8
ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7. doi: 10.1093/nar/gkr777. Epub 2011 Sep 23.
9
Supplemental studies for cardiovascular risk assessment in safety pharmacology: a critical overview.
Cardiovasc Toxicol. 2011 Dec;11(4):285-307. doi: 10.1007/s12012-011-9133-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验