Suppr超能文献

基于剪切波稀疏性和非局部全变差的压缩感知磁共振成像

Compressed sensing magnetic resonance imaging based on shearlet sparsity and nonlocal total variation.

作者信息

Yazdanpanah Ali Pour, Regentova Emma E

机构信息

University of Nevada, Electrical and Computer Engineering Department, Las Vegas, Nevada, United States.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):026003. doi: 10.1117/1.JMI.4.2.026003. Epub 2017 Jun 28.

Abstract

Compressed sensing (CS) has been utilized for acceleration of data acquisition in magnetic resonance imaging (MRI). MR images can then be reconstructed with an undersampling rate significantly lower than that required by the Nyquist sampling criterion. However, the CS usually produces images with artifacts, especially at high reduction rates. We propose a CS MRI method called shearlet sparsity and nonlocal total variation (SS-NLTV) that exploits SS-NLTV regularization. The shearlet transform is an optimal sparsifying transform with excellent directional sensitivity compared with that by wavelet transform. The NLTV, on the other hand, extends the TV regularizer to a nonlocal variant that can preserve both textures and structures and produce sharper images. We have explored an approach of combining alternating direction method of multipliers (ADMM), splitting variables technique, and adaptive weighting to solve the formulated optimization problem. The proposed SS-NLTV method is evaluated experimentally and compared with the previously reported high-performance methods. Results demonstrate a significant improvement of compressed MR image reconstruction on four medical MRI datasets.

摘要

压缩感知(CS)已被用于磁共振成像(MRI)中加速数据采集。然后可以以远低于奈奎斯特采样准则要求的欠采样率重建MR图像。然而,CS通常会产生带有伪影的图像,尤其是在高压缩率情况下。我们提出了一种名为剪切波稀疏性和非局部全变差(SS-NLTV)的CS MRI方法,该方法利用了SS-NLTV正则化。与小波变换相比,剪切波变换是一种具有出色方向敏感性的最优稀疏化变换。另一方面,非局部全变差将全变差正则化扩展为一种非局部变体,它可以同时保留纹理和结构并生成更清晰的图像。我们探索了一种结合交替方向乘子法(ADMM)、变量分裂技术和自适应加权来解决所制定的优化问题的方法。对所提出的SS-NLTV方法进行了实验评估,并与先前报道的高性能方法进行了比较。结果表明,在四个医学MRI数据集中,压缩MR图像重建有显著改进。

相似文献

本文引用的文献

3
Nonseparable shearlet transform.不可分剪切波变换。
IEEE Trans Image Process. 2013 May;22(5):2056-65. doi: 10.1109/TIP.2013.2244223. Epub 2013 Jan 30.
4
Efficient MR image reconstruction for compressed MR imaging.基于压缩感知的高效磁共振图像重建。
Med Image Anal. 2011 Oct;15(5):670-9. doi: 10.1016/j.media.2011.06.001. Epub 2011 Jun 24.
5
Second order total generalized variation (TGV) for MRI.基于二阶全变分(TGV)的磁共振成像。
Magn Reson Med. 2011 Feb;65(2):480-91. doi: 10.1002/mrm.22595. Epub 2010 Dec 8.
6
A shearlet approach to edge analysis and detection.一种用于边缘分析与检测的剪切波方法。
IEEE Trans Image Process. 2009 May;18(5):929-41. doi: 10.1109/TIP.2009.2013082.
10
Improved k-t BLAST and k-t SENSE using FOCUSS.使用FOCUSS改进的k-t BLAST和k-t SENSE。
Phys Med Biol. 2007 Jun 7;52(11):3201-26. doi: 10.1088/0031-9155/52/11/018. Epub 2007 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验