1 Department of Biostatistics, The State University of New York, Buffalo, USA.
2 Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA.
Stat Methods Med Res. 2018 Dec;27(12):3560-3576. doi: 10.1177/0962280217704451. Epub 2017 May 15.
Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the "EPV/ROC" technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications.
许多统计研究报告为了推理目的而报告 p 值。在几种情况下,p 值的随机性质被忽略了,这可能导致在实际数据实验中得出错误的结论。p 值的随机性使得它们难以用于检查给定检验程序的性能或研究因素之间的关联。我们将注意力转向现代统计文献,将期望 p 值 (EPV) 作为决策规则性能的度量。在我们的研究过程中,我们证明 EPV 可以在接收器操作特性 (ROC) 曲线分析的上下文中考虑,这是一种成熟的生物统计方法。基于 ROC 的框架为调查和构建统计决策程序提供了一种新的、有效的方法,包括:(1) 评估和可视化测试机制的特性,例如考虑部分 EPV;(2) 通过最小化 EPV 来开发最优测试;(3) 创建用于最优组合多个测试统计数据的新方法。我们证明,所提出的基于 EPV 的方法允许我们针对各种显著水平最大化测试算法的综合功效。在应用中,我们使用所提出的方法构建最优测试并分析心肌梗死疾病数据集。我们概述了“EPV/ROC”技术在评估不同决策程序及其构建和特性方面的有用性,着眼于实际应用。