Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, NC, 27708, USA.
Department of Biomedical Engineering, Duke University, USA.
Angew Chem Int Ed Engl. 2017 Jun 6;56(24):6778-6782. doi: 10.1002/anie.201700991. Epub 2017 May 15.
We present terminal deoxynucleotidyl transferase-catalyzed enzymatic polymerization (TcEP) for the template-free synthesis of high-molecular-weight, single-stranded DNA (ssDNA) and demonstrate that it proceeds by a living chain-growth polycondensation mechanism. We show that the molecular weight of the reaction products is nearly monodisperse, and can be manipulated by the feed ratio of nucleotide (monomer) to oligonucleotide (initiator), as typically observed for living polymerization reactions. Understanding the synthesis mechanism and the reaction kinetics enables the rational, template-free synthesis of ssDNA that can be used for a range of biomedical and nanotechnology applications.
我们提出了末端脱氧核苷酸转移酶催化的酶促聚合(TcEP)方法,用于无模板的高分子量单链 DNA(ssDNA)的合成,并证明它通过活性链增长缩聚机制进行。我们表明,反应产物的分子量几乎是单分散的,可以通过核苷酸(单体)与寡核苷酸(引发剂)的进料比来控制,这与通常观察到的活性聚合反应一致。对合成机制和反应动力学的理解可以实现 ssDNA 的合理、无模板合成,可用于一系列生物医学和纳米技术应用。