Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , Shaanxi Province , People's Republic of China.
Anal Chem. 2018 Apr 17;90(8):5390-5397. doi: 10.1021/acs.analchem.8b00589. Epub 2018 Apr 4.
A versatile flow cytometric strategy is developed for the sensitive detection of plant microRNA (miRNA) by coupling the target-templated click nucleic acid ligation (CNAL) with on-bead terminal enzymatic DNA polymerization (TEP). Unlike ligase-catalyzed ligation reaction, the plant miRNA-templated enzyme-free CNAL between two single-stranded DNA (ssDNA) probes, respectively modified with Aza-dibenzocyclooctyne (Aza-DBCO) and N, can not only simplify the operation, but also achieve a much higher ligation efficiency. More importantly, the undesirable nonspecific ligation between the Aza-DBCO- and N-modified ssDNA, can be effectively eliminated by adding Tween-20, which allows the use of cycling CNAL (CCNAL) in a background-free manner. So each plant miRNA can template many rounds of CNAL reaction to produce numerous ligation products, forming efficient signal amplification. The ligated ssDNA can be anchored on the magnetic beads (MBs) with the 3'-OH termini exposed outside. Then terminal deoxynucleotidyl transferase (TdT), a sequence-independent and template-free polymerase, would specifically catalyze the DNA polymerization along these 3'-OH termini on the MBs, forming poly(T) tails up to thousands of nucleotides long. Each poly(T) tail allows specific binding of numerous 6-carboxyfluorescein (FAM)-labeled poly(A)25 oligonucleotides to accumulate a lot of fluorophores on the MBs, leading to the second step of signal amplification. By integrating the advantages of CCNAL-TEP for highly efficient signal amplification and robust MBs signal readout with powerful flow cytometer, high sensitivity is achieved and the detection limit of plant miRNA has been pushed down to a low level of 5 fM with high specificity to well discriminate even single-base difference between miRNA targets.
开发了一种通用的流式细胞术策略,通过将靶标模板点击核酸连接 (CNAL) 与珠上末端酶促 DNA 聚合 (TEP) 相结合,来灵敏地检测植物 microRNA (miRNA)。与连接酶催化的连接反应不同,植物 miRNA 模板的无酶 CNAL 发生在两条单链 DNA (ssDNA) 探针之间,这两条探针分别用 Aza-二苯并环辛炔 (Aza-DBCO) 和 N 修饰。这种方法不仅简化了操作,而且还实现了更高的连接效率。更重要的是,通过添加 Tween-20,可以有效消除 Aza-DBCO- 和 N 修饰的 ssDNA 之间的非特异性连接,从而可以以无背景的方式使用循环 CNAL (CCNAL)。因此,每个植物 miRNA 可以模板化许多轮 CNAL 反应,产生大量的连接产物,形成有效的信号放大。连接的 ssDNA 可以通过 3'-OH 末端暴露在外面的方式锚定在磁性珠 (MBs) 上。然后,末端脱氧核苷酸转移酶 (TdT),一种序列非依赖性和无模板依赖性的聚合酶,会特异性地沿着 MBs 上这些 3'-OH 末端催化 DNA 聚合,形成长达数千个核苷酸长的聚(T)尾巴。每个聚(T)尾巴允许大量的 6-羧基荧光素 (FAM) 标记的聚(A)25 寡核苷酸特异性结合,在 MBs 上积累大量荧光团,从而实现信号的第二次放大。通过整合 CCNAL-TEP 高效信号放大和强大的 MBs 信号读取的优势以及功能强大的流式细胞仪,实现了高灵敏度,并且植物 miRNA 的检测限已被推低至 5 fM 的低水平,具有高特异性,可以很好地区分 miRNA 靶标之间甚至单个碱基的差异。