Goudail François
Opt Lett. 2017 May 15;42(10):1899-1902. doi: 10.1364/OL.42.001899.
Estimation of the Stokes vector from N>4 intensity measurements is usually performed with the pseudo-inverse (PI) estimator, which is optimal when the noise that corrupts the measurements is additive and Gaussian. In the presence of Poisson shot noise, the maximum-likelihood (ML) estimator is different from the PI estimator, but is more complex to implement since it is not closed-form. We compare in this Letter the precisions obtained with the ML and the PI estimators in the presence of Poisson noise when using measurement structures based on spherical designs. We show that, in this case, the gain in precision brought by the ML estimator is real but modest, so that in applications where processing speed is an issue, the PI estimator can be considered sufficient. This result is important in the choice of the inversion strategy for Stokes polarimetry.
从N>4次强度测量中估计斯托克斯矢量通常使用伪逆(PI)估计器,当测量中受到的噪声为加性高斯噪声时,该估计器是最优的。在存在泊松散粒噪声的情况下,最大似然(ML)估计器与PI估计器不同,但由于其不是闭式的,实现起来更为复杂。在本信函中,我们比较了在存在泊松噪声时,使用基于球面设计的测量结构时,ML估计器和PI估计器所获得的精度。我们表明,在这种情况下,ML估计器带来的精度提升是真实的,但幅度不大,因此在处理速度是一个问题的应用中,PI估计器可以被认为是足够的。这一结果对于斯托克斯偏振测量的反演策略选择很重要。