Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, CB2 3RA Cambridge, United Kingdom.
Physik-Department, Lehrstuhl für Biophysik, Technische Universität München, 85748 Garching, Germany.
Phys Rev E. 2017 Apr;95(4-1):042413. doi: 10.1103/PhysRevE.95.042413. Epub 2017 Apr 28.
Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of the thermally activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and crucially relies on the assumption that the barrier energy is much larger than k_{B}T (limit of comparatively low thermal fluctuations). As was shown already in Dudko et al. [Phys. Rev. Lett. 96, 108101 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.108101], this approach leads to the unphysical prediction of dissociation time increasing with decreasing binding energy when the latter is lowered to values comparable to k_{B}T (limit of large thermal fluctuations). We propose a theoretical framework (fully supported by numerical simulations) which amends Kramers' theory in this limit and use it to extract the dissociation rate from single-molecule experiments where now predictions are physically meaningful and in agreement with simulations over the whole range of applied forces (binding energies). These results are expected to be relevant for a large number of experimental settings in single-molecule biophysics.
从生物物理学中单分子牵引实验中提取能量景观信息的理论,都无一例外地基于克拉默斯(Kramers)关于势阱中热激活逃逸率的理论。众所周知,该理论恢复了速率对势垒能的阿仑尼乌斯(Arrhenius)依赖性,并且关键依赖于势垒能远大于 k_BT(相对低的热波动极限)的假设。正如杜德科等人[Phys. Rev. Lett. 96, 108101 (2006)]已经表明的那样,当后者降低到与 k_BT(大的热波动极限)可比的值时,这种方法导致不物理的预测,即解离时间随着结合能的降低而增加。我们提出了一个理论框架(完全由数值模拟支持),在这个极限下修正了克拉默斯理论,并将其用于从单分子实验中提取解离速率,现在的预测在整个应用力(结合能)范围内具有物理意义,并与模拟结果一致。这些结果预计在单分子生物物理学的大量实验设置中具有相关性。