School of Mathematics, University of Minnesota 127 Vincent Hall, Minneapolis, Minnesota 55455, USA.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer Rosselló 149, 08036 Barcelona, Spain.
Phys Rev E. 2017 Apr;95(4-1):042323. doi: 10.1103/PhysRevE.95.042323. Epub 2017 Apr 27.
The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.
网络中反复耦合的尖峰神经元的涌现动力学取决于单细胞动力学和网络拓扑结构的相互作用。大多数关于网络动力学的理论研究都假设了简单的拓扑结构,例如以固定概率随机且独立地建立连接(Erdős-Rényi 网络)(ER)或全连接网络。然而,来自切片实验的最新发现表明,皮质神经元之间的实际连接模式比 ER 随机网络更具结构性。在这里,我们探讨了在连接中引入额外的高阶统计结构如何影响神经元网络的动力学。具体来说,我们考虑了网络中每个神经元的突触前和突触后接触数量(度)来自联合度分布的网络。我们为单个人群的同质神经元和兴奋性和抑制性神经元网络推导出了平均场方程,其中神经元可以具有任意度分布。通过对平均场方程的分析和对积分和放电神经元网络的模拟,我们表明此类网络具有比等效 ER 网络更丰富的潜在动力学。最后,我们将度分布与所谓的皮质基序联系起来。