Rost Thomas, Deger Moritz, Nawrot Martin P
Computational Systems Neuroscience, Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
Biol Cybern. 2018 Apr;112(1-2):81-98. doi: 10.1007/s00422-017-0737-7. Epub 2017 Oct 26.
Balanced networks are a frequently employed basic model for neuronal networks in the mammalian neocortex. Large numbers of excitatory and inhibitory neurons are recurrently connected so that the numerous positive and negative inputs that each neuron receives cancel out on average. Neuronal firing is therefore driven by fluctuations in the input and resembles the irregular and asynchronous activity observed in cortical in vivo data. Recently, the balanced network model has been extended to accommodate clusters of strongly interconnected excitatory neurons in order to explain persistent activity in working memory-related tasks. This clustered topology introduces multistability and winnerless competition between attractors and can capture the high trial-to-trial variability and its reduction during stimulation that has been found experimentally. In this prospect article, we review the mean field description of balanced networks of binary neurons and apply the theory to clustered networks. We show that the stable fixed points of networks with clustered excitatory connectivity tend quickly towards firing rate saturation, which is generally inconsistent with experimental data. To remedy this shortcoming, we then present a novel perspective on networks with locally balanced clusters of both excitatory and inhibitory neuron populations. This approach allows for true multistability and moderate firing rates in activated clusters over a wide range of parameters. Our findings are supported by mean field theory and numerical network simulations. Finally, we discuss possible applications of the concept of joint excitatory and inhibitory clustering in future cortical network modelling studies.
平衡网络是哺乳动物新皮层中神经网络常用的基本模型。大量兴奋性和抑制性神经元相互递归连接,使得每个神经元接收到的众多正输入和负输入平均相互抵消。因此,神经元的放电由输入的波动驱动,类似于在皮层体内数据中观察到的不规则和异步活动。最近,平衡网络模型已被扩展以容纳强相互连接的兴奋性神经元簇,以解释与工作记忆相关任务中的持续活动。这种聚类拓扑结构引入了吸引子之间的多稳定性和无胜者竞争,并且可以捕捉到实验中发现的高试验间变异性及其在刺激过程中的降低。在这篇展望文章中,我们回顾了二元神经元平衡网络的平均场描述,并将该理论应用于聚类网络。我们表明,具有聚类兴奋性连接的网络的稳定不动点往往会迅速趋向于放电率饱和,这通常与实验数据不一致。为了弥补这一缺点,我们随后提出了一种关于具有兴奋性和抑制性神经元群体局部平衡簇的网络的新观点。这种方法在广泛的参数范围内允许激活簇中真正的多稳定性和适度的放电率。我们的发现得到了平均场理论和数值网络模拟的支持。最后,我们讨论了联合兴奋性和抑制性聚类概念在未来皮层网络建模研究中的可能应用。