Matsui Reiko, Watanabe Yosuke, Murdoch Colin E
Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, USA.
Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Japan.
Redox Biol. 2017 Aug;12:1011-1019. doi: 10.1016/j.redox.2017.04.040. Epub 2017 May 4.
Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.
小鼠后肢缺血已被广泛用作研究外周动脉疾病的模型。对氧化剂的酶源或抗氧化系统成分进行基因调控后发现,尽管患有糖尿病或动脉粥样硬化的小鼠体内可能存在较高水平的有害氧化剂,但生理水平的氧化剂对于促进股动脉闭塞后动脉生成和血管生成过程至关重要。因此,需要精确控制氧化剂以刺激肢体肌肉中的血管形成。氧化剂通过对氧化还原敏感的半胱氨酸硫醇进行氧化修饰来传导细胞信号。特别重要的是,与丰富的谷胱甘肽进行的可逆修饰,即S-谷胱甘肽化(或谷胱甘肽加合物),相对稳定,并会改变蛋白质功能,包括信号传导、转录和细胞骨架排列。谷氧还蛋白-1(Glrx)是一种催化谷胱甘肽加合物逆转的酶,其本身并不清除氧化剂。Glrx可能在氧化剂水平波动的情况下控制氧化还原信号传导。在缺血肌肉中,通过缺失Glrx增加谷胱甘肽加合物可改善体内肢体血管再通,这表明内源性Glrx具有抗血管生成作用。相应地,Glrx过表达在体外减弱VEGF信号传导,并在体内减弱缺血性血管形成。有几个Glrx靶点,包括HIF-1α,它们可能通过减少谷胱甘肽加合物来抑制血管形成。这些动物研究警示人们,过量的抗氧化剂可能对缺血肢体的治疗产生适得其反的效果,并突出了Glrx作为改善缺血肢体血管形成的潜在治疗靶点。