Kreuzthaler Markus, Martínez-Costa Catalina, Kaiser Peter, Schulz Stefan
CBmed GmbH - Center for Biomarker Research in Medicine.
Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria.
Stud Health Technol Inform. 2017;236:24-31.
Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.
电子病历中的常规患者数据只是部分结构化,且编码部分更少,主要用于行政目的。大部分数据仅以自由文本形式存在。将这些内容转换为结构化且语义明确的形式是查询和信息提取的前提条件。本文提出的系统架构核心基于SAP HANA内存数据库技术,使用SAP Connected Health平台进行数据集成以及临床数据仓库建设。自然语言处理管道分析非结构化内容,并将其映射到定义明确的信息模型中的标准化词汇表。由此产生的语义标准化患者档案可用于广泛的临床和研究应用场景。