Suppr超能文献

受磷蛋白的磷酸化、突变与结构动力学:一种理解和治疗心肌病的生物物理学方法

Phospholamban phosphorylation, mutation, and structural dynamics: a biophysical approach to understanding and treating cardiomyopathy.

作者信息

Ablorh Naa-Adjeley D, Thomas David D

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.

出版信息

Biophys Rev. 2015 Mar;7(1):63-76. doi: 10.1007/s12551-014-0157-z. Epub 2015 Jan 21.

Abstract

We review the recent development of novel biochemical and spectroscopic methods to determine the site-specific phosphorylation, expression, mutation, and structural dynamics of phospholamban (PLB), in relation to its function (inhibition of the cardiac calcium pump, SERCA2a), with specific focus on cardiac physiology, pathology, and therapy. In the cardiomyocyte, SERCA2a actively transports Ca into the sarcoplasmic reticulum (SR) during relaxation (diastole) to create the concentration gradient that drives the passive efflux of Ca required for cardiac contraction (systole). Unphosphorylated PLB (U-PLB) inhibits SERCA2a, but phosphorylation at S16 and/or T17 (producing P-PLB) changes the structure of PLB to relieve SERCA2a inhibition. Because insufficient SERCA2a activity is a hallmark of heart failure, SERCA2a activation, by gene therapy (Andino et al. 2008; Fish et al. 2013; Hoshijima et al. 2002; Jessup et al. 2011) or drug therapy (Ferrandi et al. 2013; Huang 2013; Khan et al. 2009; Rocchetti et al. 2008; Zhang et al. 2012), is a widely sought goal for treatment of heart failure. This review describes rational approaches to this goal. Novel biophysical assays, using site-directed labeling and high-resolution spectroscopy, have been developed to resolve the structural states of SERCA2a-PLB complexes in vitro and in living cells. Novel biochemical assays, using synthetic standards and multidimensional immunofluorescence, have been developed to quantitate PLB expression and phosphorylation states in cells and human tissues. The biochemical and biophysical properties of U-PLB, P-PLB, and mutant PLB will ultimately resolve the mechanisms of loss of inhibition and gain of inhibition to guide therapeutic development. These assays will be powerful tools for investigating human tissue samples from the Sydney Heart Bank, for the purpose of analyzing and diagnosing specific disorders.

摘要

我们回顾了用于确定受磷蛋白(PLB)位点特异性磷酸化、表达、突变及结构动力学的新型生化和光谱方法的最新进展,这些进展与PLB的功能(抑制心肌钙泵,即SERCA2a)相关,特别关注心脏生理学、病理学及治疗。在心肌细胞中,SERCA2a在舒张期(心脏松弛期)将钙离子主动转运至肌浆网(SR),以建立浓度梯度,该梯度驱动心脏收缩期(心脏收缩)所需的钙离子被动外流。未磷酸化的PLB(U-PLB)抑制SERCA2a,但S16和/或T17位点的磷酸化(产生P-PLB)会改变PLB的结构,从而解除对SERCA2a的抑制。由于SERCA2a活性不足是心力衰竭的一个标志,通过基因治疗(安迪诺等人,2008年;菲什等人,2013年;星岛等人,2002年;杰瑟普等人,2011年)或药物治疗(费兰迪等人,2013年;黄,2013年;汗等人,2009年;罗凯蒂等人,2008年;张等人,2012年)激活SERCA2a,是治疗心力衰竭广泛追求的目标。本综述描述了实现这一目标的合理方法。利用定点标记和高分辨率光谱的新型生物物理检测方法已被开发出来,以解析体外和活细胞中SERCA2a-PLB复合物的结构状态。利用合成标准物和多维免疫荧光的新型生化检测方法已被开发出来,以定量细胞和人体组织中PLB的表达及磷酸化状态。U-PLB、P-PLB和突变型PLB的生化及生物物理特性最终将解析抑制丧失和抑制增强的机制,以指导治疗开发。这些检测方法将成为研究悉尼心脏银行人体组织样本的有力工具,用于分析和诊断特定疾病。

相似文献

引用本文的文献

1
Suppression of lusitropy as a disease mechanism in cardiomyopathies.在心肌病中,舒张功能抑制作为一种疾病机制。
Front Cardiovasc Med. 2023 Jan 9;9:1080965. doi: 10.3389/fcvm.2022.1080965. eCollection 2022.

本文引用的文献

3
Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation.时间分辨荧光共振能量转移揭示 SERCA-PLB 调节的结构机制。
Biochem Biophys Res Commun. 2014 Jun 27;449(2):196-201. doi: 10.1016/j.bbrc.2014.04.166. Epub 2014 May 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验