Suppr超能文献

对来自丰富海洋细菌嗜甲基菌属的辅因子结合型DddK催化二甲基巯基丙酸裂解的结构与生化见解

Structural and Biochemical Insights into Dimethylsulfoniopropionate Cleavage by Cofactor-Bound DddK from the Prolific Marine Bacterium Pelagibacter.

作者信息

Schnicker Nicholas J, De Silva Saumya M, Todd Jonathan D, Dey Mishtu

机构信息

Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States.

School of Biological Sciences, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom.

出版信息

Biochemistry. 2017 Jun 13;56(23):2873-2885. doi: 10.1021/acs.biochem.7b00099. Epub 2017 May 30.

Abstract

Enormous amounts of the organic osmolyte dimethylsulfoniopropionate (DMSP) are produced in marine environments where bacterial DMSP lyases cleave it, yielding acrylate and the climate-active gas dimethyl sulfide (DMS). SAR11 bacteria are the most abundant clade of heterotrophic bacteria in the oceans and play a key role in DMSP catabolism. An important environmental factor affecting DMS generation via DMSP lyases is the availability of metal ions because they are essential cofactors for many of these enzymes. Here we examine the structure and activity of DddK in the presence of various metal ions. We have established that DddK containing a double-stranded β-helical motif utilizes various divalent metal ions as cofactors for catalytic activity. However, nickel, an abundant metal ion in marine environments, adopts a distorted octahedral coordination environment and conferred the highest DMSP lyase activity. Crystal structures of cofactor-bound DddK reveal key metal ion binding and catalytic residues and provide the first rationalization for varying activities with different metal ions. The structures of DddK along with site-directed mutagenesis and ultraviolet-visible studies are consistent with Tyr 64 acting as a base to initiate the β-elimination reaction of DMSP. Our biochemical and structural studies provide a detailed understanding of DMS generation by one of the ocean's most prolific bacteria.

摘要

在海洋环境中会产生大量的有机渗透质二甲基巯基丙酸内盐(DMSP),细菌DMSP裂解酶会将其裂解,生成丙烯酸酯和具有气候活性的气体二甲基硫醚(DMS)。SAR11细菌是海洋中最丰富的异养细菌分支,在DMSP分解代谢中起关键作用。影响通过DMSP裂解酶生成DMS的一个重要环境因素是金属离子的可用性,因为它们是许多此类酶必不可少的辅助因子。在这里,我们研究了在各种金属离子存在下DddK的结构和活性。我们已经确定,含有双链β-螺旋基序的DddK利用各种二价金属离子作为催化活性的辅助因子。然而,镍是海洋环境中丰富的金属离子,它采用扭曲的八面体配位环境,并赋予最高的DMSP裂解酶活性。与辅因子结合的DddK的晶体结构揭示了关键的金属离子结合和催化残基,并首次解释了不同金属离子具有不同活性的原因。DddK的结构以及定点诱变和紫外可见研究与酪氨酸64作为引发DMSPβ-消除反应的碱一致。我们的生化和结构研究提供了对海洋中最丰富的细菌之一产生DMS的详细理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验