Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.03127-18. Print 2019 Apr 15.
The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram quantities in marine environments and has important roles in global sulfur and carbon cycling. Many marine microorganisms catabolize DMSP via DMSP lyases, generating the climate-active gas dimethyl sulfide (DMS). DMS oxidation products participate in forming cloud condensation nuclei and, thus, may influence weather and climate. SAR11 bacteria are the most abundant marine heterotrophic bacteria; many of them contain the DMSP lyase DddK, and their transcripts are relatively abundant in seawater. In a recently described catalytic mechanism for DddK, Tyr64 is predicted to act as the catalytic base initiating the β-elimination reaction of DMSP. Tyr64 was proposed to be deprotonated by coordination to the metal cofactor or its neighboring His96. To further probe this mechanism, we purified and characterized the DddK protein from strain HTCC1062 and determined the crystal structures of wild-type DddK and its Y64A and Y122A mutants (bearing a change of Y to A at position 64 or 122, respectively), where the Y122A mutant is complexed with DMSP. The structural and mutational analyses largely support the catalytic role of Tyr64, but not the method of its deprotonation. Our data indicate that an active water molecule in the active site of DddK plays an important role in the deprotonation of Tyr64 and that this is far more likely than coordination to the metal or His96. Sequence alignment and phylogenetic analysis suggest that the proposed catalytic mechanism of DddK has universal significance. Our results provide new mechanistic insights into DddK and enrich our understanding of DMS generation by SAR11 bacteria. The climate-active gas dimethyl sulfide (DMS) plays an important role in global sulfur cycling and atmospheric chemistry. DMS is mainly produced through the bacterial cleavage of marine dimethylsulfoniopropionate (DMSP). When released into the atmosphere from the oceans, DMS can be photochemically oxidized into DMSO or sulfate aerosols, which form cloud condensation nuclei that influence the reflectivity of clouds and, thereby, global temperature. SAR11 bacteria are the most abundant marine heterotrophic bacteria, and many of them contain DMSP lyase DddK to cleave DMSP, generating DMS. In this study, based on structural analyses and mutational assays, we revealed the catalytic mechanism of DddK, which has universal significance in SAR11 bacteria. This study provides new insights into the catalytic mechanism of DddK, leading to a better understanding of how SAR11 bacteria generate DMS.
渗透调节物二甲硫基丙酸盐(DMSP)在海洋环境中以 petagram 数量产生,在全球硫和碳循环中具有重要作用。许多海洋微生物通过 DMSP 裂解酶(DMSP 裂解酶)代谢 DMSP,生成气候活性气体二甲硫(DMS)。DMS 氧化产物参与形成云凝结核,因此可能影响天气和气候。SAR11 细菌是最丰富的海洋异养细菌;其中许多细菌含有 DMSP 裂解酶 DddK,并且它们的转录本在海水中相对丰富。在最近描述的 DddK 催化机制中,预测 Tyr64 作为催化碱,引发 DMSP 的β-消除反应。Tyr64 被提议通过与金属辅因子或其邻近的 His96 配位而脱质子化。为了进一步探究该机制,我们从 株 HTCC1062 中纯化和表征了 DddK 蛋白,并测定了野生型 DddK 及其 Y64A 和 Y122A 突变体(分别在位置 64 或 122 将 Y 突变为 A)的晶体结构,其中 Y122A 突变体与 DMSP 复合。结构和突变分析在很大程度上支持了 Tyr64 的催化作用,但不支持其脱质子化的方法。我们的数据表明,DddK 活性位点中的一个活性水分子在 Tyr64 的脱质子化中起重要作用,这比与金属或 His96 的配位更有可能。序列比对和系统发育分析表明,DddK 的提议催化机制具有普遍意义。我们的结果为 DddK 的催化机制提供了新的见解,并丰富了我们对 SAR11 细菌产生 DMS 的理解。气候活性气体二甲硫(DMS)在全球硫循环和大气化学中起着重要作用。DMS 主要通过细菌对海洋二甲硫基丙酸盐(DMSP)的裂解产生。当从海洋释放到大气中时,DMS 可被光化学氧化成 DMSO 或硫酸盐气溶胶,形成云凝结核,影响云的反射率,从而影响全球温度。SAR11 细菌是最丰富的海洋异养细菌,其中许多细菌含有 DMSP 裂解酶 DddK 来裂解 DMSP,生成 DMS。在这项研究中,基于结构分析和突变测定,我们揭示了 DddK 的催化机制,该机制在 SAR11 细菌中具有普遍意义。这项研究为 DddK 的催化机制提供了新的见解,有助于更好地理解 SAR11 细菌如何产生 DMS。