Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.
School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
Nat Microbiol. 2016 May 16;1(8):16065. doi: 10.1038/nmicrobiol.2016.65.
Marine phytoplankton produce ∼10(9) tonnes of dimethylsulfoniopropionate (DMSP) per year(1,2), an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide(3,4). SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemo-organotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell's unusual requirement for reduced sulfur(5,6). Here, we report that Pelagibacter HTCC1062 produces the gas methanethiol, and that a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, simultaneously shunts as much as 59% of DMSP uptake to dimethyl sulfide production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of dimethyl sulfide as the supply of DMSP exceeds cellular sulfur demands for biosynthesis.
海洋浮游植物每年产生约 10(9)吨二甲基巯基丙酸酯(DMSP)(1,2),其中约有 10%被细菌通过 DMSP 裂解途径代谢为具有气候活性的气体二甲基硫(DMS)(3,4)。SAR11 α-变形菌(浮霉菌目)是海洋中最丰富的化能有机异养细菌,已被证明可以将 DMSP 同化到生物量中,从而为这种细胞对还原硫的特殊需求提供了来源(5,6)。在这里,我们报告 Pelagibacter HTCC1062 产生了气体甲硫醇,并且第二个 DMSP 代谢途径,由一个 cupin 样 DMSP 裂解酶 DddK 介导,同时将高达 59%的 DMSP 摄取分流到 DMS 产生中。我们提出了一个模型,其中 DMSP 在这些途径之间的分配是通过动力学控制的,随着 DMSP 的供应超过细胞生物合成对硫的需求,释放出越来越多的 DMS。