Lara Patricia, Öjemalm Karin, Reithinger Johannes, Holgado Aurora, Maojun You, Hammed Abdessalem, Mattle Daniel, Kim Hyun, Nilsson IngMarie
From the Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden and.
Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
J Biol Chem. 2017 Jul 7;292(27):11349-11360. doi: 10.1074/jbc.M117.779421. Epub 2017 May 16.
The oligosaccharyltransferase complex, localized in the endoplasmic reticulum (ER) of eukaryotic cells, is responsible for the -linked glycosylation of numerous protein substrates. The membrane protein STT3 is a highly conserved part of the oligosaccharyltransferase and likely contains the active site of the complex. However, understanding the catalytic determinants of this system has been challenging, in part because of a discrepancy in the structural topology of the bacterial eukaryotic proteins and incomplete information about the mechanism of membrane integration. Here, we use a glycosylation mapping approach to investigate these questions. We measured the membrane integration efficiency of the mouse STT3-A and yeast Stt3p transmembrane domains (TMDs) and report a refined topology of the N-terminal half of the mouse STT3-A. Our results show that most of the STT3 TMDs are well inserted into the ER membrane on their own or in the presence of the natural flanking residues. However, for the mouse STT3-A hydrophobic domains 4 and 6 and yeast Stt3p domains 2, 3a, 3c, and 6 we measured reduced insertion efficiency into the ER membrane. Furthermore, we mapped the first half of the STT3-A protein, finding two extra hydrophobic domains between the third and the fourth TMD. This result indicates that the eukaryotic STT3 has 13 transmembrane domains, consistent with the structure of the bacterial homolog of STT3 and setting the stage for future combined efforts to interrogate this fascinating system.
寡糖基转移酶复合物定位于真核细胞的内质网(ER)中,负责众多蛋白质底物的N-连接糖基化。膜蛋白STT3是寡糖基转移酶高度保守的一部分,可能包含该复合物的活性位点。然而,了解该系统的催化决定因素一直具有挑战性,部分原因是细菌和真核蛋白质的结构拓扑存在差异,以及关于膜整合机制的信息不完整。在这里,我们使用糖基化图谱方法来研究这些问题。我们测量了小鼠STT3-A和酵母Stt3p跨膜结构域(TMD)的膜整合效率,并报告了小鼠STT3-A N端一半的精细拓扑结构。我们的结果表明,大多数STT3 TMD自身或在存在天然侧翼残基的情况下都能很好地插入内质网膜。然而,对于小鼠STT3-A的疏水结构域4和6以及酵母Stt3p的结构域2、3a、3c和6,我们测量到其插入内质网膜的效率降低。此外,我们绘制了STT3-A蛋白的前半部分,发现在第三个和第四个TMD之间有两个额外的疏水结构域。这一结果表明,真核生物的STT3有13个跨膜结构域,与STT3的细菌同源物结构一致,为未来联合研究这个迷人的系统奠定了基础。