Suppr超能文献

形成膜蛋白折叠的边缘疏水跨膜α螺旋

Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.

作者信息

De Marothy Minttu T, Elofsson Arne

机构信息

Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden.

出版信息

Protein Sci. 2015 Jul;24(7):1057-74. doi: 10.1002/pro.2698. Epub 2015 May 30.

Abstract

Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment.

摘要

细胞已经进化出一套令人惊叹的机制来促进膜蛋白插入膜中。虽然我们对膜整合的机制和决定因素有了相当深入的了解,但仍需要更多数据来理解具有更复杂插入和折叠途径的膜蛋白的插入过程。本综述将聚焦于疏水性较弱的跨膜螺旋及其对膜蛋白折叠的影响。这些弱疏水性跨膜片段本身无法被转运体识别,因此依赖局部序列环境进行膜整合。这样的片段如何驻留在膜内呢?我们将根据蛋白质本身以及其所处环境中的特征来探讨这一问题。已有研究描述了蛋白质中的几个特征会影响疏水性较弱螺旋的插入。此外,生物膜的影响也很显著。首先,膜内极性基团的实际成本可能不像预期的那么高;膜中蛋白质的存在以及某些氨基酸的特性可能使跨膜螺旋能够容纳一个带电荷的残基。脂质环境也已被证明会直接影响跨膜螺旋的拓扑结构以及膜边界,这意味着膜蛋白与其环境之间存在动态关系。

相似文献

1
Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
Protein Sci. 2015 Jul;24(7):1057-74. doi: 10.1002/pro.2698. Epub 2015 May 30.
2
Membrane insertion of marginally hydrophobic transmembrane helices depends on sequence context.
J Mol Biol. 2010 Feb 12;396(1):221-9. doi: 10.1016/j.jmb.2009.11.036. Epub 2009 Nov 18.
3
The positive inside rule is stronger when followed by a transmembrane helix.
J Mol Biol. 2014 Aug 12;426(16):2982-91. doi: 10.1016/j.jmb.2014.06.002. Epub 2014 Jun 10.
4
Recognition of transmembrane helices by the endoplasmic reticulum translocon.
Nature. 2005 Jan 27;433(7024):377-81. doi: 10.1038/nature03216.
5
Amphipathic helices and membrane curvature.
FEBS Lett. 2010 May 3;584(9):1840-7. doi: 10.1016/j.febslet.2009.10.022. Epub 2009 Oct 20.
6
Folding and Insertion of Transmembrane Helices at the ER.
Int J Mol Sci. 2021 Nov 26;22(23):12778. doi: 10.3390/ijms222312778.
9
Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix.
Mol Cell. 2012 Feb 24;45(4):529-40. doi: 10.1016/j.molcel.2011.12.024. Epub 2012 Jan 25.
10
Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization.
Biochim Biophys Acta. 2015 Sep;1848(9):1886-96. doi: 10.1016/j.bbamem.2015.03.011. Epub 2015 Mar 16.

引用本文的文献

1
Not All Bacterial Outer-Membrane Proteins Are β-Barrels.
MicroPubl Biol. 2025 Feb 7;2025. doi: 10.17912/micropub.biology.001394. eCollection 2025.
2
Case report: Double mutations in a patient with early-onset Alzheimer's disease in China, PSEN2 and IDE variants.
Front Neurosci. 2024 Oct 30;18:1423892. doi: 10.3389/fnins.2024.1423892. eCollection 2024.
3
Structural and functional insights from the sequences and complex domain architecture of adhesin-like proteins from and .
Front Microbiol. 2024 Oct 21;15:1463715. doi: 10.3389/fmicb.2024.1463715. eCollection 2024.
6
Molecular docking and simulation of IcaC protein as O-succinyltransferase function in biofilm formation.
Curr Res Struct Biol. 2022 Mar 26;4:78-86. doi: 10.1016/j.crstbi.2022.03.002. eCollection 2022.
8
Discovery and Characterization of the Phospholemman/SIMP/Viroporin Superfamily.
Microb Physiol. 2022;32(3-4):83-94. doi: 10.1159/000521947. Epub 2022 Feb 11.
9
Membrane Protein Engineering with Rosetta.
Methods Mol Biol. 2021;2315:43-57. doi: 10.1007/978-1-0716-1468-6_3.

本文引用的文献

1
Mechanisms of integral membrane protein insertion and folding.
J Mol Biol. 2015 Mar 13;427(5):999-1022. doi: 10.1016/j.jmb.2014.09.014. Epub 2014 Sep 30.
2
Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.
Pharmacol Rev. 2014 Oct;66(4):1033-79. doi: 10.1124/pr.114.009217.
3
Life at the border: adaptation of proteins to anisotropic membrane environment.
Protein Sci. 2014 Sep;23(9):1165-96. doi: 10.1002/pro.2508. Epub 2014 Jul 2.
4
How YidC inserts and folds proteins across a membrane.
Nat Struct Mol Biol. 2014 May;21(5):435-6. doi: 10.1038/nsmb.2823.
5
Large tilts in transmembrane helices can be induced during tertiary structure formation.
J Mol Biol. 2014 Jun 26;426(13):2529-38. doi: 10.1016/j.jmb.2014.04.020. Epub 2014 Apr 30.
6
Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core.
Protein Sci. 2014 Jul;23(7):981-92. doi: 10.1002/pro.2483. Epub 2014 May 14.
8
Structural and functional profiling of the lateral gate of the Sec61 translocon.
J Biol Chem. 2014 May 30;289(22):15845-55. doi: 10.1074/jbc.M113.533794. Epub 2014 Apr 21.
9
Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?
Proteins. 2014 Sep;82(9):2190-8. doi: 10.1002/prot.24582. Epub 2014 Apr 29.
10
Ionic protein-lipid interaction at the plasma membrane: what can the charge do?
Trends Biochem Sci. 2014 Mar;39(3):130-40. doi: 10.1016/j.tibs.2014.01.002. Epub 2014 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验