Department of Pharmacy, The Second Xiangya Hospital of Central South University , Changsha, Hunan 410011, P. R. China.
ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20719-20727. doi: 10.1021/acsami.7b02575. Epub 2017 Jun 6.
We report a one-step method for facile and sustainable synthesis of magnetic iron oxide nanorods (or IONRs) with mean lengths ranging from 25 to 50 nm and mean diameters ranging from 5 to 8 nm. The prepared IONRs are highly stable in aqueous media and can be surface functionalized for biomarker-targeted applications. This synthetic strategy involves the reaction of iron(III) acetylacetonate with polyethyleneimine in the presence of oleylamine and phenyl ether, followed by thermal decomposition. Importantly, the length and diameter as well as the aspect ratio of the prepared IONRs can be controlled by modulating the reaction parameters. We show that the resultant IONRs exhibit stronger magnetic properties compared to those of the widely used spherical iron oxide nanoparticles (IONPs) at the same iron content. The increased magnetic properties are dependent on the aspect ratio, with the magnetic saturation gradually increasing from 10 to 75 emu g when increasing length of the IONRs, 5 nm in diameter, from 25 to 50 nm. The magnetic resonance imaging (MRI) contrast-enhancing effect, as measured in terms of the transverse relaxivity, r, increased from 670.6 to 905.5 mM s, when increasing the length from 25 to 50 nm. When applied to the immunomagnetic cell separation of the transferrin receptor (TfR)-overexpressed medulloblastoma cells using transferrin (Tf) as the targeting ligand, Tf-conjugated IONRs can capture 92 ± 3% of the targeted cells under a given condition (2.0 × 10 cells/mL, 0.2 mg Fe/mL concentration of magnetic materials, and 2.5 min of incubation time) compared to only 37 ± 2% when using the spherical IONPs, and 14 ± 2% when using commercially available magnetic beads, significantly improving the efficiency of separating the targeted cells.
我们报告了一种简便、可持续的方法,用于制备平均长度为 25-50nm、平均直径为 5-8nm 的磁性氧化铁纳米棒(IONRs)。制备的 IONRs 在水介质中高度稳定,可进行表面功能化,用于生物标志物靶向应用。这种合成策略涉及铁(III)乙酰丙酮与聚乙烯亚胺在油胺和苯醚存在下的反应,然后进行热分解。重要的是,通过调节反应参数,可以控制制备的 IONRs 的长度、直径和纵横比。我们表明,与广泛使用的球形氧化铁纳米颗粒(IONPs)相比,在相同铁含量下,所制备的 IONRs 表现出更强的磁性。增加的磁性依赖于纵横比,随着 IONRs 长度从 25 到 50nm 增加,直径为 5nm,磁饱和逐渐从 10 增加到 75emu/g。磁共振成像(MRI)对比增强效果,以横向弛豫率 r 来衡量,从 25nm 增加到 50nm 时从 670.6 增加到 905.5mM s。当使用转铁蛋白(Tf)作为靶向配体将其应用于转铁蛋白受体(TfR)过表达髓母细胞瘤细胞的免疫磁细胞分离时,Tf 偶联的 IONRs 在给定条件下(2.0×10个细胞/mL,0.2mgFe/mL 浓度的磁性材料和 2.5 分钟孵育时间)可以捕获 92±3%的靶向细胞,而使用球形 IONPs 仅为 37±2%,使用市售的磁性珠仅为 14±2%,显著提高了分离靶向细胞的效率。
ACS Appl Mater Interfaces. 2017-6-6
ACS Appl Bio Mater. 2019-8-19
Contrast Media Mol Imaging. 2010-11-30
Colloids Surf B Biointerfaces. 2014-10-1
Contrast Media Mol Imaging. 2010-11-21
Pharmaceutics. 2025-6-4
Nanomaterials (Basel). 2024-3-20
Nanoscale Adv. 2023-5-24
Beilstein J Nanotechnol. 2020-8-17
Materials (Basel). 2019-9-30
ACS Appl Mater Interfaces. 2016-7-6
Chem Commun (Camb). 2016-7-5
Biomaterials. 2016-9