Kwiatkowski Alexander L, Shvets Petr V, Timchenko Ivan S, Kessel Darya E, Shipkova Elizaveta D, Maslakov Konstantin I, Kuznetsov Ivan A, Muravlev Dmitry A, Philippova Olga E, Shibaev Andrey V
Physics Department, Lomonosov Moscow State University, Leninskije Gory 1-2, 119991 Moscow, Russia.
REC "Functional Nanomaterials", Immanuel Kant Baltic Federal University, Aleksandra Nevskogo St., 14, 236041 Kaliningrad, Russia.
Nanomaterials (Basel). 2024 Mar 20;14(6):541. doi: 10.3390/nano14060541.
We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe and Co ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFeO structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and "green" way to prepare CoFeO nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites.
我们报道了一种无需额外稳定剂合成拉长型钴铁氧体纳米颗粒的简便新方法,该方法涉及在静磁场中Fe和Co离子的共沉淀反应。磁场被证明是合成过程中钴铁氧体纳米晶体一维生长的关键因素。应用透射电子显微镜(TEM)、X射线衍射(XRD)和拉曼光谱对所得纳米颗粒的形态和结构进行表征。根据TEM,它们呈现出平均长度为25 nm、直径为3.4 nm的纳米棒,具有特征面间距为2.9 Å的单晶结构。XRD和拉曼光谱证实了纳米棒的尖晶石CoFeO结构。老化后,合成的纳米棒分别表现出最大饱和磁化强度和矫顽力,分别等于30 emu/g和0.3 kOe。因此,所提出的方法是一种简单且“绿色”的方法,可制备具有高纵横比和显著磁性的CoFeO纳米棒,这对于包括生物医学、能量存储以及各向异性磁性纳米复合材料制备在内的各种实际应用都很重要。