Suppr超能文献

铜绿微囊藻FACHB-905对养分负荷的转录和生理反应及其对毒素形成和光合作用的影响

Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905.

作者信息

Peng Guotao, Lin Sijie, Fan Zhengqiu, Wang Xiangrong

机构信息

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.

出版信息

Toxins (Basel). 2017 May 17;9(5):168. doi: 10.3390/toxins9050168.

Abstract

An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene () and key photosynthesis genes (, and of FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of cells. We observed an upregulation of gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in cells. Based on these transcriptional and physiological responses of to nutrient loading, these results could provide more insight into blooms management and toxin formation regulation.

摘要

了解有害藻华的一个重要目标是确定环境因素如何影响产毒物种的生长和毒素形成。在本研究中,我们使用实时逆转录定量聚合酶链反应(RT-qPCR)研究了不同营养负荷条件下毒素形成基因()和关键光合作用基因(FACHB-905的、和)的转录反应。还评估了三个生理生化参数(丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽(GSH)),以深入了解细胞的生理反应。我们观察到在营养缺乏条件下,特别是在氮(N)限制条件下,基因上调,重新供应营养后转录丰度下降。不同的是,在整个培养期间,关键光合作用基因在缺磷处理中的转录水平较高,而在缺氮细胞中的转录水平随时间变化,这表明细胞对营养胁迫有适应性调节。在缺氮和缺磷条件下,抗氧化酶(SOD和GSH)的含量均增加,这表明营养胁迫导致自由基产生过量。即使重新引入营养后,SOD和GSH的量仍继续增加,并且MDA与酶活性之间存在很强的相关性,这表明细胞在努力平衡氧化还原系统。基于对营养负荷的这些转录和生理反应,这些结果可以为藻华管理和毒素形成调控提供更多见解。

相似文献

2
Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.
Ecotoxicol Environ Saf. 2015 Dec;122:126-35. doi: 10.1016/j.ecoenv.2015.07.011. Epub 2015 Jul 29.
4
Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels.
J Hazard Mater. 2015 Mar 21;285:517-24. doi: 10.1016/j.jhazmat.2014.11.027. Epub 2014 Nov 24.
5
Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.
Environ Sci Pollut Res Int. 2016 Feb;23(4):3586-95. doi: 10.1007/s11356-015-5605-1. Epub 2015 Oct 21.
6
Algicidal Molecular Mechanism and Toxicological Degradation of by White-Rot Fungi.
Toxins (Basel). 2020 Jun 19;12(6):406. doi: 10.3390/toxins12060406.
7
Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation.
Environ Microbiol. 2011 Apr;13(4):1064-77. doi: 10.1111/j.1462-2920.2010.02412.x. Epub 2011 Jan 20.
8
Inhibitory mechanisms of Acacia mearnsii extracts on the growth of Microcystis aeruginosa.
Water Sci Technol. 2015;71(6):856-61. doi: 10.2166/wst.2015.038.
9
Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
J Hazard Mater. 2015 Oct 30;297:83-91. doi: 10.1016/j.jhazmat.2015.04.064. Epub 2015 Apr 25.
10
Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
Sci Total Environ. 2019 Mar 25;658:439-448. doi: 10.1016/j.scitotenv.2018.12.089. Epub 2018 Dec 7.

引用本文的文献

1
Isolation of a Novel sp. TH05 with Potent Cyanocidal Effects on .
Toxins (Basel). 2025 Jul 17;17(7):354. doi: 10.3390/toxins17070354.
2
Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand.
Toxins (Basel). 2021 Sep 8;13(9):631. doi: 10.3390/toxins13090631.
3
Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters.
Environ Pollut. 2021 Dec 1;290:118056. doi: 10.1016/j.envpol.2021.118056. Epub 2021 Aug 27.
4
Evaluating putative ecological drivers of microcystin spatiotemporal dynamics using metabarcoding and environmental data.
Harmful Algae. 2019 Jun;86:84-95. doi: 10.1016/j.hal.2019.05.004. Epub 2019 May 31.
5
Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae.
PLoS One. 2019 Mar 12;14(3):e0213370. doi: 10.1371/journal.pone.0213370. eCollection 2019.

本文引用的文献

4
Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.
Chemosphere. 2015 Nov;139:541-9. doi: 10.1016/j.chemosphere.2015.07.074. Epub 2015 Aug 27.
5
The reduced bioavailability of copper by nano-TiO₂ attenuates the toxicity to Microcystis aeruginosa.
Environ Sci Pollut Res Int. 2015 Aug;22(16):12407-14. doi: 10.1007/s11356-015-4492-9. Epub 2015 Apr 23.
8
Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae.
J Hazard Mater. 2015;283:778-86. doi: 10.1016/j.jhazmat.2014.10.026. Epub 2014 Oct 28.
9
Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species.
Appl Environ Microbiol. 2014 Dec;80(24):7512-20. doi: 10.1128/AEM.02605-14. Epub 2014 Sep 26.
10
Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains.
Appl Environ Microbiol. 2014 Sep;80(18):5836-43. doi: 10.1128/AEM.01009-14. Epub 2014 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验