Suppr超能文献

构建工程界面结构以提高有机金属卤化物钙钛矿太阳能电池的效率和稳定性。

Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.

作者信息

Qiu Longbin, Ono Luis K, Jiang Yan, Leyden Matthew R, Raga Sonia R, Wang Shenghao, Qi Yabing

机构信息

Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of Science and Technology Graduate University (OIST) , 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.

出版信息

J Phys Chem B. 2018 Jan 18;122(2):511-520. doi: 10.1021/acs.jpcb.7b03921. Epub 2017 May 25.

Abstract

The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO, but the device is not stable and degrades rapidly. With an amorphous TiO compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO. Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CHNHPbI leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO and CHNHPbI can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO can enhance device stability, strongly suggests that the interface interaction between TiO and CHNHPbI plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

摘要

低成本有机金属卤化物钙钛矿太阳能电池的功率转换效率(PCE)迅速提高,这表明这些电池是传统光伏技术的一个有前途的替代品。然而,异常滞后现象和不尽人意的稳定性阻碍了钙钛矿太阳能电池的工业化。界面工程对于制造高度稳定且无滞后现象的钙钛矿太阳能电池至关重要。在此我们报告,对广泛使用的TiO致密层进行表面改性可以深入了解钙钛矿太阳能电池中的界面相互作用。使用锐钛矿TiO可获得18.5%的最高PCE,但该器件不稳定且降解迅速。使用非晶TiO致密层时,器件的寿命延长,但PCE较低且滞后现象更明显。为了同时实现高PCE和长寿命,在TiO顶部沉积了一层绝缘聚合物界面层。研究了三种分别具有不同官能团(羟基、氨基或芳基)的聚合物,以进一步了解界面结构与器件PCE以及稳定性之间的关系。我们表明,不仅需要考虑界面处的能带排列,还需要考虑薄界面层与钙钛矿薄膜之间的界面化学相互作用。羟基和氨基与CHNH PbI相互作用,导致PCE较低。相比之下,沉积一层由芳基组成的聚合物薄层以防止TiO与CHNH PbI直接接触,可以显著提高器件稳定性,同时保持高PCE。TiO顶部的聚合物界面层能够提高器件稳定性这一事实,强烈表明TiO与CHNH PbI之间的界面相互作用起着关键作用。我们的工作突出了界面结构的重要性,并为进一步优化钙钛矿太阳能电池的PCE和稳定性铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验