Division of Solid State Physics, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21, Uppsala, Sweden.
Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden.
Sci Rep. 2017 May 17;7(1):2044. doi: 10.1038/s41598-017-01151-2.
Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO, which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.
具有晶体有序的固态材料已经为人熟知并得到了近一个世纪的研究,而无序材料的描述仍然具有很大的挑战性。其中包括非晶态过渡金属氧化物[aTMOs]的原子短程有序和电子特性,由于其光学开关特性和在低电压下能够嵌入碱金属离子的高容量,它们已成为新型多功能材料。几十年来,aTMOs 的研究一直致力于技术优化。然而,揭示其复杂的原子短程有序仍然具有挑战性。目前,还没有系统的、广泛适用的方法来评估原子尺寸结构,而且由于电子局域化与结构有关,因此仍然没有建立用于模拟 aTMOs 性质的完善的光学和电子机制。我们提出了一种最先进的、涉及理论和实验的自洽计算框架中的系统方法,以揭示原子短程有序及其对电子特性的作用。该方案应用于非晶态三氧化钨 aWO,尽管其原子尺寸结构尚未确定,但它是非晶电致变色 aTMO 中研究最多的一种。我们的方法提供了实验数据与相应模型结构的一一对应匹配,从中可以直接计算出与 XANES 光谱中观察到的电子跃迁一致的电子特性。