Suppr超能文献

识别基线免疫相关生物标志物,预测免疫治疗的临床结局。

Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy.

机构信息

Department of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, S5-105, 1470 Madison Avenue, Box 1128, New York, NY 10029 USA.

Head of Immunology Section, University of Verona, Piazzale Le L. A. Scuro, 10, Verona, Italy.

出版信息

J Immunother Cancer. 2017 May 16;5:44. doi: 10.1186/s40425-017-0243-4. eCollection 2017.

Abstract

As cancer strikes, individuals vary not only in terms of factors that contribute to its occurrence and development, but as importantly, in their capacity to respond to treatment. While exciting new therapeutic options that mobilize the immune system against cancer have led to breakthroughs for a variety of malignancies, success is limited to a subset of patients. Pre-existing immunological features of both the host and the tumor may contribute to how patients will eventually fare with immunotherapy. A broad understanding of baseline immunity, both in the periphery and in the tumor microenvironment, is needed in order to fully realize the potential of cancer immunotherapy. Such interrogation of the tumor, blood, and host immune parameters prior to treatment is expected to identify biomarkers predictive of clinical outcome as well as to elucidate why some patients fail to respond to immunotherapy. To approach these opportunities for progress, the Society for Immunotherapy of Cancer (SITC) reconvened the Immune Biomarkers Task Force. Comprised of an international multidisciplinary panel of experts, Working Group 4 sought to make recommendations that focus on the complexity of the tumor microenvironment, with its diversity of immune genes, proteins, cells, and pathways naturally present at baseline and in circulation, and novel tools to aid in such broad analyses.

摘要

当癌症来袭时,个体不仅在导致其发生和发展的因素方面存在差异,而且在对治疗的反应能力方面也存在重要差异。虽然动员免疫系统对抗癌症的令人兴奋的新治疗选择为多种恶性肿瘤带来了突破,但成功仅限于一部分患者。宿主和肿瘤的预先存在的免疫特征可能会影响患者最终接受免疫治疗的效果。为了充分发挥癌症免疫治疗的潜力,需要广泛了解基线免疫,包括外周和肿瘤微环境中的免疫。在治疗前对肿瘤、血液和宿主免疫参数进行这种分析,有望确定预测临床结果的生物标志物,并阐明为什么有些患者对免疫治疗没有反应。为了抓住这些进展的机会,癌症免疫治疗学会(SITC)重新召集了免疫生物标志物工作组。该工作组由一个国际多学科专家小组组成,第 4 工作组旨在提出建议,重点关注肿瘤微环境的复杂性,包括其在基线和循环中自然存在的多样性的免疫基因、蛋白质、细胞和途径,以及有助于进行这种广泛分析的新工具。

相似文献

2
The Society for Immunotherapy of Cancer Biomarkers Task Force recommendations review.癌症免疫治疗生物标志物学会工作组建议审查。
Semin Cancer Biol. 2018 Oct;52(Pt 2):12-15. doi: 10.1016/j.semcancer.2017.09.006. Epub 2017 Sep 22.
3
Systematic evaluation of immune regulation and modulation.系统性评估免疫调节。
J Immunother Cancer. 2017 Mar 21;5:21. doi: 10.1186/s40425-017-0223-8. eCollection 2017.
8
MDSC; the Most Important Cell You Have Never Heard Of.骨髓来源抑制细胞;你闻所未闻的最重要细胞。
Trends Pharmacol Sci. 2019 Jan;40(1):4-7. doi: 10.1016/j.tips.2018.10.008. Epub 2018 Dec 6.
10
Immunotherapy biomarkers 2016: overcoming the barriers.免疫疗法生物标志物 2016:突破障碍。
J Immunother Cancer. 2017 Mar 21;5(1):29. doi: 10.1186/s40425-017-0225-6.

引用本文的文献

本文引用的文献

2
Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy.伊匹单抗辅助治疗Ⅲ期黑色素瘤的长期生存
N Engl J Med. 2016 Nov 10;375(19):1845-1855. doi: 10.1056/NEJMoa1611299. Epub 2016 Oct 7.
3
Analyses of Pretherapy Peripheral Immunoscore and Response to Vaccine Therapy.治疗前外周免疫评分及疫苗治疗反应分析
Cancer Immunol Res. 2016 Sep 2;4(9):755-65. doi: 10.1158/2326-6066.CIR-16-0037. Epub 2016 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验