Suppr超能文献

通过生理、手机、移动性和行为数据预测学生的幸福感。

Predicting students' happiness from physiology, phone, mobility, and behavioral data.

作者信息

Jaques Natasha, Taylor Sara, Azaria Asaph, Ghandeharioun Asma, Sano Akane, Picard Rosalind

机构信息

MIT Media Lab, Cambridge, MA 02139, USA.

出版信息

Int Conf Affect Comput Intell Interact Workshops. 2015 Sep;2015:222-228. doi: 10.1109/ACII.2015.7344575. Epub 2015 Dec 7.

Abstract

In order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, participants reported their wellbeing on measures including stress, health, and happiness. Because of the relationship between happiness and depression, modeling happiness may help us to detect individuals who are at risk of depression and guide interventions to help them. We are also interested in how behavioral factors (such as sleep and social activity) affect happiness positively and negatively. A variety of machine learning and feature selection techniques are compared, including Gaussian Mixture Models and ensemble classification. We achieve 70% classification accuracy of self-reported happiness on held-out test data.

摘要

为了模拟学生的幸福感,我们将机器学习方法应用于从本科生那里收集的数据,每位学生的数据收集期为一个月。收集的数据包括生理信号、位置、智能手机日志以及对行为问题的调查回复。参与者每天报告他们在压力、健康和幸福等方面的幸福感。由于幸福与抑郁之间的关系,模拟幸福感可能有助于我们检测出有抑郁风险的个体,并指导干预措施来帮助他们。我们还对行为因素(如睡眠和社交活动)如何正面和负面地影响幸福感感兴趣。我们比较了多种机器学习和特征选择技术,包括高斯混合模型和集成分类。在留出的测试数据上,我们实现了自我报告幸福感的70%分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe8/5431070/cdd01f99334f/nihms853533f1.jpg

相似文献

1
Predicting students' happiness from physiology, phone, mobility, and behavioral data.通过生理、手机、移动性和行为数据预测学生的幸福感。
Int Conf Affect Comput Intell Interact Workshops. 2015 Sep;2015:222-228. doi: 10.1109/ACII.2015.7344575. Epub 2015 Dec 7.

引用本文的文献

4
Predicting Brain Functional Connectivity Using Mobile Sensing.利用移动传感技术预测脑功能连接性
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Mar;4(1). doi: 10.1145/3381001. Epub 2020 Mar 18.
5
Turning data into better mental health: Past, present, and future.将数据转化为更优心理健康:过去、现在与未来。
Front Digit Health. 2022 Aug 17;4:916810. doi: 10.3389/fdgth.2022.916810. eCollection 2022.
7
Affect Estimation with Wearable Sensors.利用可穿戴传感器进行情感估计。
J Healthc Inform Res. 2020 Mar 11;4(3):261-294. doi: 10.1007/s41666-019-00066-z. eCollection 2020 Sep.

本文引用的文献

2
Automatic identification of artifacts in electrodermal activity data.皮肤电活动数据中伪迹的自动识别。
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1934-7. doi: 10.1109/EMBC.2015.7318762.
7
Sleep and depression.睡眠与抑郁症。
J Clin Psychiatry. 2005 Oct;66(10):1254-69. doi: 10.4088/jcp.v66n1008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验