Zhang Peng, Wang Xiuna, Fan Aili, Zheng Yanjing, Liu Xingzhong, Wang Shihua, Zou Huixi, Oakley Berl R, Keller Nancy P, Yin Wen-Bing
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
College of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
Mol Microbiol. 2017 Aug;105(3):469-483. doi: 10.1111/mmi.13711. Epub 2017 Jun 6.
Spore pigmentation is very common in the fungal kingdom. The best studied pigment in fungi is melanin which coats the surface of single cell spores. What and how pigments function in a fungal species with multiple cell conidia is poorly understood. Here, we identified and deleted a polyketide synthase (PKS) gene PfmaE and showed that it is essential for multicellular conidial pigmentation and development in a plant endophytic fungus, Pestalotiopsis fici. To further characterize the melanin pathway, we utilized an advanced Aspergillus nidulans heterologous system for the expression of the PKS PfmaE and the Pfma gene cluster. By structural elucidation of the pathway metabolite scytalone in A. nidulans, we provided chemical evidence that the Pfma cluster synthesizes DHN melanin. Combining genetic deletion and combinatorial gene expression of Pfma cluster genes, we determined that the putative reductase PfmaG and the PKS are sufficient for the synthesis of scytalone. Feeding scytalone back to the P. fici ΔPfmaE mutant restored pigmentation and multicellular adherence of the conidia. These results cement a growing understanding that pigments are essential not simply for protection of spores from biotic and abiotic stresses but also for spore structural development.
孢子色素沉着在真菌界非常普遍。真菌中研究得最透彻的色素是黑色素,它覆盖在单细胞孢子的表面。对于具有多个细胞分生孢子的真菌物种中色素的功能以及作用方式,人们了解甚少。在这里,我们鉴定并删除了一个聚酮合酶(PKS)基因PfmaE,并表明它对于植物内生真菌——榕树拟盘多毛孢(Pestalotiopsis fici)的多细胞分生孢子色素沉着和发育至关重要。为了进一步表征黑色素途径,我们利用先进的构巢曲霉(Aspergillus nidulans)异源系统来表达PKS PfmaE和Pfma基因簇。通过对构巢曲霉中途径代谢物蝶啶酮的结构解析,我们提供了化学证据,证明Pfma基因簇合成二羟基萘(DHN)黑色素。结合Pfma基因簇基因的基因缺失和组合基因表达,我们确定推定的还原酶PfmaG和PKS足以合成蝶啶酮。将蝶啶酮回补到榕树拟盘多毛孢ΔPfmaE突变体中可恢复分生孢子的色素沉着和多细胞黏附。这些结果进一步证实了人们越来越多的认识,即色素不仅对于保护孢子免受生物和非生物胁迫至关重要,而且对于孢子的结构发育也至关重要。