Xu Xinran, Sun Yanhong, Zhang Anxin, Li Sijia, Zhang Shu, Chen Sijing, Lou Chunbo, Cai Lei, Chen Yihua, Luo Chunxiong, Yin Wen-Bing
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Sci (Weinh). 2024 Dec;11(47):e2407195. doi: 10.1002/advs.202407195. Epub 2024 Oct 28.
Microbial genetic circuits are vital for regulating gene expression and synthesizing bioactive compounds. However, assessing their strength and timing, especially in multicellular fungi, remains challenging. Here, an advanced microfluidic platform is combined with a mathematical model enabling precise characterization of fungal gene regulatory circuits (GRCs) at the single-cell level. Utilizing this platform, the expression intensity and timing of 30 transcription factor-promoter combinations derived from two representative fungal GRCs, using the model fungus Aspergillus nidulans are determined. As a proof of concept, the selected GRC combination is utilized to successfully refactor the biosynthetic pathways of bioactive molecules, precisely control their production, and activate the expression of the silenced biosynthetic gene clusters (BGCs). This study provides insights into microbial gene regulation and highlights the potential of platform in fungal synthetic biology applications and the discovery of novel natural products.
微生物遗传回路对于调节基因表达和合成生物活性化合物至关重要。然而,评估它们的强度和时间,尤其是在多细胞真菌中,仍然具有挑战性。在这里,一个先进的微流控平台与一个数学模型相结合,能够在单细胞水平上精确表征真菌基因调控回路(GRC)。利用这个平台,确定了来自两个代表性真菌GRC、使用模式真菌构巢曲霉的30种转录因子-启动子组合的表达强度和时间。作为概念验证,所选的GRC组合被用于成功重构生物活性分子的生物合成途径,精确控制它们的产生,并激活沉默的生物合成基因簇(BGC)的表达。这项研究为微生物基因调控提供了见解,并突出了该平台在真菌合成生物学应用和新型天然产物发现中的潜力。