Suppr超能文献

MO-F-BRB-06:金纳米颗粒对接受放射治疗细胞内电离密度的影响:使用蒙特卡罗方法对二次电子进行微观径迹分析

MO-F-BRB-06: Gold Nanoparticle Modify Density of Ionizations inside Cells Submitted to Radiation Therapy: Microscopic Track Analysis of Secondary Electrons Using Monte Carlo.

作者信息

Marques T, Schwarcke M, Nicolucci P

机构信息

University of Sao Paulo, Department of Physics - FFCLRP, Brazil.

MD Anderson Cancer Center - Radiation Oncology Department, Houston.

出版信息

Med Phys. 2012 Jun;39(6Part21):3874. doi: 10.1118/1.4735819.

Abstract

PURPOSE

Study density of ionization in cells containing gold nanoparticles (AuNP) submitted to Radiation Therapy.

METHODS

Spherical gold nanoparticles with diameters ranging 0-100nm were considered evenly distributed inside a 20mgr;m cubic cell, maintaining the gold concentration of 0.01%, with constant number of gold atoms inside the cell. Monte Carlo simulations were performed using PENELOPE code considering event-by-event transport of secondary electrons with minimum energy of 1keV. Simulated clinical energy spectrum of 250kV and 6MV x-rays;Co-60 and Ir-192 γ-ray sources obtained at each corresponding build-up depths were considered. Density of ionization inside the cell was evaluated counting delta electrons created either in AuNP or cell, excluding electrons attenuated inside the nanoparticles. The dose enhancement resultant from interaction of electrons with few micrometers range was quantified by the factor μDEF as the ratio of doses inside the cell with and without AuNP.

RESULTS

Maps of ionization density were obtained at the central plane of the cell illustrating ionizations around and between AuNP. The density of ionization increases in cell medium as the AuNP diameter enlarges, being higher to larger nanoparticles for all energies studied. The total dose deposited in the cell is affected by the fraction of electrons consumed in the nanoparticles, resulting in size-dependence for μDEF. The μDEFs for 250kV are 1.68 to 20nm, 1.83 to 60nm and 1.72 to 100nm; μDEFs for 6MV are 1.14 to 20nm, 1.38 to 60nm and 1.20 to 100nm, therefore presenting an optimum nanoparticle size for clinical applications in Radiation Therapy.

CONCLUSIONS

The μDEF describes dose enhancements founded on the effective density of ionizations inside cell medium containing AuNP, considering real electron tracks close to metallic interfaces. The profile of ionizations describes electron spectra of electrons with intracellular range considering dynamics of creation and consumption, hence being directly proportional to potential applicability of AuNP in Radiation Therapy. This work was funding supported by CAPES - Nanobiomed Network.

摘要

目的

研究接受放射治疗的含有金纳米颗粒(AuNP)的细胞中的电离密度。

方法

考虑直径范围为0 - 100nm的球形金纳米颗粒均匀分布在一个20μm的立方体细胞内,细胞内金浓度保持为0.01%,细胞内金原子数量恒定。使用PENELOPE代码进行蒙特卡罗模拟,考虑二次电子的逐个事件传输,二次电子的最小能量为1keV。考虑了在每个相应的积累深度获得的250kV和6MV X射线、钴 - 60和铱 - 192γ射线源的模拟临床能谱。通过计算在AuNP或细胞中产生的δ电子(不包括在纳米颗粒内衰减的电子)来评估细胞内的电离密度。电子与几微米范围内相互作用产生的剂量增强通过μDEF因子进行量化,μDEF为细胞内有和没有AuNP时剂量的比值。

结果

在细胞的中心平面获得了电离密度图,显示了AuNP周围和之间的电离情况。随着AuNP直径增大,细胞介质中的电离密度增加,对于所有研究的能量,较大的纳米颗粒电离密度更高。细胞中沉积的总剂量受纳米颗粒中消耗的电子分数影响,导致μDEF与尺寸有关。250kV时的μDEF分别为直径20nm时为1.68、60nm时为1.83、100nm时为1.72;6MV时的μDEF分别为直径20nm时为1.14、60nm时为1.38、100nm时为1.20,因此在放射治疗的临床应用中呈现出一个最佳的纳米颗粒尺寸。

结论

μDEF描述了基于含有AuNP的细胞介质内有效电离密度的剂量增强,考虑了靠近金属界面的实际电子轨迹。电离分布描述了考虑产生和消耗动态的细胞内范围内电子的能谱,因此与AuNP在放射治疗中的潜在适用性直接相关。本研究得到了巴西高等教育人员素质提升协调办公室 - 纳米生物医学网络的资助支持。

相似文献

7
Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
Phys Med Biol. 2012 Jun 7;57(11):3323-31. doi: 10.1088/0031-9155/57/11/3323. Epub 2012 May 9.
9
Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement.
Med Phys. 2017 Nov;44(11):5949-5960. doi: 10.1002/mp.12570. Epub 2017 Oct 11.
10
AN ALGORITHM TO DETERMINE THE NANODOSIMETRIC IMPACT OF GOLD NANOPARTICLES ON CELL MODELS.
Radiat Prot Dosimetry. 2019 May 1;183(1-2):55-59. doi: 10.1093/rpd/ncy220.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验