Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
Med Phys. 2011 Feb;38(2):624-31. doi: 10.1118/1.3539623.
The aim of this study is to understand the characteristics of secondary electrons generated from the interaction of gold nanoparticles (GNPs) with x-rays as a function of nanoparticle size and beam energy and thereby further the understanding of GNP-enhanced radiotherapy.
The effective range, deflection angle, dose deposition, energy, and interaction processes of electrons produced from the interaction of x-rays with a GNP were calculated by Monte Carlo simulations. The GEANT4 code was used to simulate and track electrons generated from a 2, 50, and 100 nm diameter GNP when it is irradiated with a 50 kVp, 250 kVp, cobalt-60, and 6 MV photon beam in water.
When a GNP was present, depending on the beam energies used, secondary electron production was increased by 10- to 2000-fold compared to an absence of a GNP. Low-energy photon beams were much more efficient at interacting with the GNP by two to three orders of magnitude compared to MV energies and increased the deflection angle. GNPs with larger diameters also contributed more dose. The majority of the energy deposition was outside the GNP, rather than self-absorbed by the nanoparticle. The mean effective range of electron tracks for the beams tested ranged from approximately 3 microm to 1 mm.
These simulated results yield important insights concerning the spatial distributions and elevated dose in GNP-enhanced radiotherapy. The authors conclude that the irradiation of GNP at lower photon energies will be more efficient for cell killing. This conclusion is consistent with published studies.
本研究旨在了解金纳米颗粒(GNPs)与 X 射线相互作用产生的次级电子的特征,这些特征随纳米颗粒尺寸和束能而变化,从而进一步了解 GNP 增强放射治疗。
通过蒙特卡罗模拟计算了 X 射线与 GNP 相互作用产生的电子的有效射程、偏转角、剂量沉积、能量和相互作用过程。使用 GEANT4 代码模拟并跟踪了直径为 2、50 和 100nm 的 GNP 在水介质中受到 50kVp、250kVp、钴-60 和 6MV 光子束照射时产生的电子。
当存在 GNP 时,与不存在 GNP 相比,根据使用的束能,次级电子的产生增加了 10 到 2000 倍。与 MV 能量相比,低能光子束与 GNP 的相互作用效率要高 2 到 3 个数量级,并且增加了偏转角。直径较大的 GNPs 也会增加更多的剂量。大部分能量沉积发生在 GNP 之外,而不是被纳米颗粒自身吸收。在测试的光束中,电子轨迹的平均有效射程范围约为 3 微米至 1 毫米。
这些模拟结果提供了有关 GNP 增强放射治疗中空间分布和升高剂量的重要见解。作者得出结论,用低能光子辐照 GNP 将更有利于细胞杀伤。这一结论与已发表的研究一致。