文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

低能质子辐照的金属纳米颗粒用于放射治疗:是否存在显著的物理效应来增强剂量传递?

Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery?

机构信息

Namur Research Institute For Life Science (NARILIS), Research center for the Physics of Matter and Radiation (PMR-LARN), University of Namur, B-5000, Namur, Belgium.

Biomedical Magnetic Resonance Group (REMA), Louvain Drug Research Institute, Université Catholique de Louvain, B-1200, Woluwé Saint Lambert, Belgium.

出版信息

Med Phys. 2017 Aug;44(8):4299-4312. doi: 10.1002/mp.12362. Epub 2017 Jul 4.


DOI:10.1002/mp.12362
PMID:28543610
Abstract

PURPOSE: To identify which physical properties of nanoparticles are correlated with the survival fraction of cells exposed in vitro to low-energy protons in combination with nanoparticles. METHODS: The Geant4 simulation toolkit (version 10.3) was used to model nanoparticles of different sizes (5-50 nm) and materials (Ti, Zr, Hf, Ta, Au, Pt), with or without an organic capping ensuring biocompatibility and to irradiate them with 1.3 or 4 MeV protons and 5.3 MeV alpha particles. The spectra of secondary electrons inside and at the nanoparticle surface were computed, as well as electron yields, Auger and organic capping contribution, trapping in metal bulk and linear energy transfer profiles as a function of distance from the nanoparticle center. In a next step, an in silico cell model was designed and loaded with gold nanoparticles, according to experimental uptake values. Dose to the cell was evaluated macroscopically and microscopically in 100 × 100 × 100 nm³ voxels for different radiation qualities. RESULTS: The cell geometry showed that radiation enhancement is negligible for the gold concentration used and for any radiation quality. However, when the single nanoparticle geometry is considered, we observed a local LET in its vicinity considerably higher than for the water equivalent case (up to 5 keV/μm at the titanium nanoparticle surface compared to 2.5 keV/μm in the water case). The yield of secondary electrons per primary interaction with 1.3 MeV protons was found to be most favorable for titanium (1.54), platinum (1.44), and gold (1.32), although results for higher Z metals are probably underestimated due to the incomplete simulation of de-excitation cascade in outer shells. It was also found that the organic capping contributed mostly to the production of low-energy electrons, adding a spike of dose near the nanoparticle surface. Indeed, the yield for the coated gold nanoparticle increased to 1.53 when exposed to 1.3 MeV protons. Although most electrons are retained inside larger nanoparticles (50 nm), it was shown that their yield is comparable to smaller sizes and that the linear energy transfer profile is better. From a combination of ballistic and nanoparticle size factors, it was concluded that 10-nm gold nanoparticles were better inducers of additional cell killing than 5-nm gold nanoparticles, matching our previous in vitro study. CONCLUSIONS: Although effects from a physical standpoint are limited, the high linear energy transfer profile at the nanoparticle surface generates detrimental events in the cell, in particular ROS-induced damage and local heating.

摘要

目的:确定纳米颗粒的哪些物理特性与体外低能质子与纳米颗粒共同照射下细胞的存活分数相关。

方法:使用 Geant4 模拟工具包(版本 10.3)对不同尺寸(5-50nm)和材料(Ti、Zr、Hf、Ta、Au、Pt)的纳米颗粒进行建模,这些纳米颗粒具有或没有确保生物相容性的有机外壳,并使用 1.3 或 4MeV 质子和 5.3MeV 阿尔法粒子对其进行辐照。计算了纳米颗粒内部和表面的二次电子谱,以及电子产额、俄歇和有机外壳贡献、金属体中的捕获和线性能量转移分布随纳米颗粒中心距离的函数。在下一步中,根据实验摄取值,设计了一个包含金纳米颗粒的虚拟细胞模型。用不同的辐射质量在 100×100×100nm³体素中宏观和微观地评估细胞剂量。

结果:细胞几何形状表明,对于所使用的金浓度和任何辐射质量,辐射增强都可以忽略不计。然而,当考虑单个纳米颗粒的几何形状时,我们观察到其附近的局部 LET 明显高于水当量情况(钛纳米颗粒表面高达 5keV/μm,而水情况为 2.5keV/μm)。发现 1.3MeV 质子与初级相互作用的二次电子产额对钛(1.54)、铂(1.44)和金(1.32)最有利,尽管由于外壳退激发级联的不完全模拟,较高 Z 金属的结果可能被低估。还发现有机外壳主要有助于产生低能电子,在纳米颗粒表面附近增加了剂量尖峰。事实上,当用 1.3MeV 质子照射时,涂覆金纳米颗粒的产额增加到 1.53。尽管大多数电子被保留在较大的纳米颗粒(50nm)中,但结果表明它们的产额与较小尺寸相当,并且线性能量转移分布更好。从弹道和纳米颗粒尺寸因素的组合中得出结论,10nm 金纳米颗粒比 5nm 金纳米颗粒更能诱导额外的细胞杀伤,这与我们之前的体外研究结果相匹配。

结论:尽管从物理角度来看,影响有限,但纳米颗粒表面的高线性能量转移剖面会在细胞中产生有害事件,特别是 ROS 诱导的损伤和局部加热。

相似文献

[1]
Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery?

Med Phys. 2017-7-4

[2]
Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.

Med Phys. 2019-12-2

[3]
Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles.

Med Phys. 2015-11

[4]
Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons.

Phys Med Biol. 2014-3-21

[5]
Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.

Phys Med Biol. 2012-5-9

[6]
Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.

Med Phys. 2018-3-23

[7]
Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.

Med Phys. 2013-7

[8]
Backscattered electron emission after proton impact on gold nanoparticles with and without polymer shell coating.

Phys Med Biol. 2019-6-12

[9]
Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers.

Med Phys. 2016-8

[10]
Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study.

Molecules. 2022-8-19

引用本文的文献

[1]
Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report.

Int J Part Ther. 2024-8-8

[2]
Zinc-Doped Iron Oxide Nanoparticles as a Proton-Activatable Agent for Dose Range Verification in Proton Therapy.

Molecules. 2023-9-29

[3]
Prospects of nanoparticle-based radioenhancement for radiotherapy.

Mater Horiz. 2023-10-2

[4]
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons.

Int J Mol Sci. 2023-2-28

[5]
Radiation nanosensitizers in cancer therapy-From preclinical discoveries to the outcomes of early clinical trials.

Bioeng Transl Med. 2021-9-23

[6]
Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses.

Int J Mol Sci. 2021-4-23

[7]
Study on the Dose Enhancement of Gold Nanoparticles When Exposed to Clinical Electron, Proton, and Alpha Particle Beams by Means of Geant4.

J Med Signals Sens. 2020-11-11

[8]
Advancements in the use of Auger electrons in science and medicine during the period 2015-2019.

Int J Radiat Biol. 2023

[9]
Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient.

Cancers (Basel). 2020-7-23

[10]
Thioredoxin Reductase Activity Predicts Gold Nanoparticle Radiosensitization Effect.

Nanomaterials (Basel). 2019-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索